Advertisement

Investigation of coda and body wave attenuation functions in Central Asia

  • Farhad SedaghatiEmail author
  • Nima Nazemi
  • Shahram Pezeshk
  • Anooshiravan Ansari
  • Siamak Daneshvaran
  • Mehdi Zare
Original Article
  • 7 Downloads

Abstract

In this study, we evaluate the body and coda wave attenuation characteristics within Kyrgyzstan and Tajikistan as part of Central Asia. The selected database consists of 354 broadband seismograms from 179 local earthquakes recorded by 24 different stations within the period of 2015 through 2018. First, coda Q has been inferred for different coda window lengths of 20, 30, 40, and 50 s using the single-backscattering interpretation. The coda Q values increase by increasing the coda window length. We show that coda attenuation properties in Central Asia are better modeled by multiple-scattering and surface wave regimes for long-distance records without invoking any depth dependence of the attenuation properties in the crust. Furthermore, standard errors and convergence of different components’ QC indicate that we can fit envelope records of coda waves much better using a coda window length of 50 s. Therefore, we evaluate average coda quality factor functions as QC = 261 f0.601 and QC = 219 f0.633 assuming multiple-scattering and surface wave regimes for a coda window length of 50 s in the frequency range of 1 to 20 Hz for distances up to 200 km. We also show that the source to site distance of records has a significant impact on coda Q estimates. For a shorter distance range up to 100 km, attenuation attributes of Central Asia are better captured by a single-scattering model. We reevaluate the average coda quality factor function as QC = 222 f0.692 assuming a single-backscattering model for a coda window length of 50 s in the frequency range of 1 to 20 Hz for distances up to 100 km. Moreover, we determine QP = 158 f0.706 and QS = 152 f0.856 with a geometrical spreading function of R−1 using the multiple-station coda normalization method.

Keywords

Central Asia Coda wave attenuation Body wave attenuation Coda normalization method 

Notes

Acknowledgements

Support for the authors was provided by their respective organizations. Waveform data for 2015 to 2018 were obtained from Incorporated Research Institutions for Seismology (IRIS; ds.iris.edu/ds/nodes/dmc, last accessed August 2018). The authors would also like to thank Luca De Siena for his thoughtful review and constructive suggestions.

References

  1. Aki K (1969) Analysis of seismic coda of local earthquakes as scattered waves. J Geophys Res 74:615–631CrossRefGoogle Scholar
  2. Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Inter 21(1):50–60CrossRefGoogle Scholar
  3. Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80:3322–3342CrossRefGoogle Scholar
  4. Akinci A, Taktak AG, Ergintav S (1994) Attenuation of coda waves in western Anatolia. Phys Earth Planet Inter 87(1–2):155–165CrossRefGoogle Scholar
  5. Akinci A, Del Pezzo E, Ibanez J (1995a) Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey). Geophys J Int 121:337–353CrossRefGoogle Scholar
  6. Akinci A, Ibanez JM, Del Pezzo E, Morales J (1995b) Geometrical spreading and attenuation of Lg waves: a comparison between western Anatolia (Turkey) and southern Spain. Tectonophysics 250:47–60CrossRefGoogle Scholar
  7. Atkinson G (1989) Attenuation of the Lg phase and site response for the eastern Canada telemetered network. Seismol Res Lett 60:59–69CrossRefGoogle Scholar
  8. Atkinson GM (2004) Empirical attenuation of ground motion spectral amplitudes in southeastern Canada and the northeastern United States. Bull Seismol Soc Am 94:1079–1095CrossRefGoogle Scholar
  9. Atkinson GM, Mereu R (1992) The shape of ground motion attenuation curves in southeastern Canada. Bull Seismol Soc Am 82:2014–2031Google Scholar
  10. Bianco F, Castellano M, Del Pezzo E, Ibanez JM (1999) Attenuation of short-period seismic waves at Mt Vesuvius, Italy. Geophys J Int 138(1):67–76CrossRefGoogle Scholar
  11. Biswas NN, Aki K (1984) Characteristics of coda waves: central and southcentral Alaska. Bull Seismol Soc Am 74(2):493–507Google Scholar
  12. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–676CrossRefGoogle Scholar
  13. Bora N, Biswas R, Dobrynina AA (2018) Regional variation of coda Q in Kopili fault zone of northeast India and its implications. Tectonophysics 722:235–248CrossRefGoogle Scholar
  14. Borleanu F, De Siena L, Thomas C, Popa M, Radulian M (2017) Seismic scattering and absorption mapping from intermediate-depth earthquakes reveals complex tectonic interactions acting in the Vrancea region and surroundings (Romania). Tectonophysics 706:129–142CrossRefGoogle Scholar
  15. Brunet MF, Sobel ER, McCann T (2017) Geological evolution of Central Asian Basins and the western Tien Shan Range. Geol Soc Lond, Spec Publ 427:SP427–SP417Google Scholar
  16. Calvet M, Margerin L (2013) Lapse-time dependence of coda Q: anisotropic multiple-scattering models and application to the Pyrenees. Bull Seismol Soc Am 103(3):1993–2010CrossRefGoogle Scholar
  17. Calvet M, Sylvander M, Margerin L, Villaseñor A (2013) Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: coda Q and peak delay time analysis. Tectonophysics 608:428–439CrossRefGoogle Scholar
  18. Chung TW, Lee K (2003) A study of high-frequency Q Lg −1 in the crust of South Korea. Bull Seismol Soc Am 93(3):1401–1406CrossRefGoogle Scholar
  19. Cramer CH (2017) Gulf Coast regional Q and boundaries from USArray data. Bull Seismol Soc Am 108:437–449CrossRefGoogle Scholar
  20. de Lorenzo S, Bianco F, Del Pezzo E (2013) Frequency dependent Qα and Qβ in the Umbria-Marche (Italy) region using a quadratic approximation of the coda-normalization method. Geophys J Int 193(3):1726–1731Google Scholar
  21. De Siena L, Del Pezzo E, Bianco F (2010) Campi Flegrei seismic attenuation image: evidences of gas reservoirs, hydrothermal basins and feeding systems. J Geophys Res 115:B09312CrossRefGoogle Scholar
  22. De Siena L, Thomas C, Waite GP, Moran SG, Klemme S (2014) Attenuation and scattering tomography of the deep plumbing system of Mount St Helens. J Geophys Res Solid Earth 119:8223–8238CrossRefGoogle Scholar
  23. De Siena L, Calvet M, Watson KJ, Jonkers ART, Thomas C (2016) Seismic scattering and absorption mapping of debris flows, feeding paths, and tectonic units at Mount St Helens volcano. Earth Planet Sci Lett 442:21–31CrossRefGoogle Scholar
  24. Del Pezzo E, Allota R, Patané D (1990) Dependence of Qc (coda Q) on coda duration time interval: model or depth effect? Bull Seismol Soc Am 80:1028–1033Google Scholar
  25. Del Pezzo E, La Rocca M, Ibanez J (1997) Observations of high-frequency scattered waves using dense arrays at Teide volcano. Bull Seismol Soc Am 87:1637–1647Google Scholar
  26. Farrokhi M, Hamzehloo H, Rahimi H, Allamehzadeh M (2015) Estimation of coda-wave attenuation in the central and eastern Alborz, Iran. Bull Seismol Soc Am 105:1756–1767CrossRefGoogle Scholar
  27. Frankel A (2015) Decay of S-wave amplitudes with distance for earthquakes in the Charlevoix, Quebec, area: effects of radiation pattern and directivity. Bull Seismol Soc Am 105:850–857CrossRefGoogle Scholar
  28. Frankel A, Wennerberg L (1987) Energy-flux model of the seismic coda: separation of scattering and intrinsic attenuation. Bull Seismol Soc Am 77:1223–1251Google Scholar
  29. Frankel A, McGarr A, Bicknell J, Mori J, Seeber L, Cranswick E (1990) Attenuation of high-frequency shear waves in the crust: measurements from New York State, South Africa, and southern California. J Geophys Res Solid Earth 95:17441–17457CrossRefGoogle Scholar
  30. Galluzzo D, La Rocca M, Margerin L, Del Pezzo E, Scarpa R (2015) Attenuation and velocity structure from diffuse coda waves: constraints from underground array data. Phys Earth Planet Inter 240:34–42CrossRefGoogle Scholar
  31. Giampiccolo E, Gresta S, Rascona F (2004) Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy). Phys Earth Planet Inter 145:55–66CrossRefGoogle Scholar
  32. Glorie S, De Grave J, Buslov MM, Zhimulev FI, Stockli DF, Batalev VY, Elburg MA (2011) Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone: the role of inherited structures during deformation-propagation. Tectonics 30(6):TC6016CrossRefGoogle Scholar
  33. Hasegawa HS (1985) Attenuation of Lg waves in the Canadian Shield. Bull Seismol Soc Am 75:1569–1582Google Scholar
  34. Havskov, J., and L. Ottemöller (2005). SEISAN (version 8.1): the earthquake analysis software for Windows, Solaris, Linux, and Mac OSX Version 8, 1–254Google Scholar
  35. Havskov J, Malone S, Mcclurg D, Crosson R (1989) Coda Q for the state of Washington. Bull Seismol Soc Am 79:1024–1038Google Scholar
  36. Havskov J, Sørensen MB, Vales D, Özyazıcıoğlu M, Sánchez G, Li B (2016) Coda Q in different tectonic areas, influence of processing parameters. Bull Seismol Soc Am 106(3):956–970CrossRefGoogle Scholar
  37. Hellweg M, Spudich P, Fletcher JB, Baker LM (1995) Stability of coda Q in the region of Parkfield, California: view from the U.S. Geological Survey Parkfield Dense Seismograph Array. J Geophys Res 100:2089–2102CrossRefGoogle Scholar
  38. Hennino R, Trégourès N, Shapiro N, Margerin L, Campillo M, Van Tiggelen B, Weaver R (2001) Observation of equipartition of seismic waves. Phys Rev Lett 86:3447–3450CrossRefGoogle Scholar
  39. Hoshiba M (1991) Simulation of multiple-scattered coda wave excitation based on the energy conservation law. Phys Earth Planet Inter 67(1–2):123–136Google Scholar
  40. Hoshiba M (1997) Seismic coda wave envelope in depth-dependent S wave velocity structure. Phys Earth Planet Inter 104(1–3):15–22Google Scholar
  41. Ibanez J, Del Pezzo E, De Miguel F, Herraiz M, Alguacil G, Morales J (1990) Depth-dependent seismic attenuation in the Granada zone (southern Spain). Bull Seismol Soc Am 80:1232–1244Google Scholar
  42. Ischuk A, Bjerrum LW, Kamchybekov M, Abdrakhmatov K, Lindholm C (2018) Probabilistic seismic hazard assessment for the area of Kyrgyzstan, Tajikistan, and eastern Uzbekistan. Bull Seismol Soc Am 108(1):130–144CrossRefGoogle Scholar
  43. Jackson DD, Anderson DL (1974) Physical mechanism of seismic waves attenuation. Rev Geophys Space Phys 8:1–63CrossRefGoogle Scholar
  44. Jemberie AL, Langston CA (2005) Site amplification, scattering, and intrinsic attenuation in the Mississippi embayment from coda waves. Bull Seismol Soc Am 95(5):1716–1730CrossRefGoogle Scholar
  45. Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78(2):741–769Google Scholar
  46. Käßner A, Ratschbacher L, Jonckheere R, Enkelmann E, Khan J, Sonntag BL, Oimahmadov I (2016) Cenozoic intracontinental deformation and exhumation at the northwestern tip of the India-Asia collision—southwestern Tian Shan, Tajikistan, and Kyrgyzstan. Tectonics 35(9):2171–2194CrossRefGoogle Scholar
  47. Kumar N, Mate S, Mukhopadhyay S (2014) Estimation of Qp and Qs of Kinnaur Himalaya. J Seismol 18(1):47–59CrossRefGoogle Scholar
  48. Loury, C., Y. Rolland, S. Guillot, A. V. Mikolaichuk, P. Lanari, O. Bruguier, and D. Bosch (2015). Crustal-scale structure of South Tien Shan: implications for subduction polarity and Cenozoic reactivation. In: Brunet, M.-F., McCann, T. & Sobel, E.R. (eds) Geological evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society, London, Special Publications, 427Google Scholar
  49. Ma’hood M (2014) Attenuation of high-frequency seismic waves in eastern Iran. Pure Appl Geophys 171:2225–2240CrossRefGoogle Scholar
  50. Margerin L, Campillo M, Shapiro NM, van Tiggelen B (1999) Residence time of diffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico. Geophys J Int 138:343–352CrossRefGoogle Scholar
  51. McNamara DE, Owens TJ, Walter WR (1996) Propagation characteristics of Lg across the Tibetan Plateau. Bull Seismol Soc Am 86(2):457–469Google Scholar
  52. Mitchell BJ (1995) Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Rev.Geophys. 33:441–462CrossRefGoogle Scholar
  53. Mitchell BJ, Pan Y, Xie J, Cong L (1997) Lg coda Q variation across Eurasia and its relation to crustal evolution. J Geophys Res Solid Earth 102(B10):22767–22779CrossRefGoogle Scholar
  54. Mitchell BJ, Cong L, Ekström G (2008) A continent‐wide map of 1‐Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution. J Geophys Res Solid Earth 113(B4)Google Scholar
  55. Mitchell B, Cong JL, Jemberie AL (2015) Continent-wide maps of Lg coda Q for North America and their relationship to crustal structure and evolution. Bull Seismol Soc Am 105:409–419CrossRefGoogle Scholar
  56. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010CrossRefGoogle Scholar
  57. Mukhopadhyay S, Sharma J, Massey R, Kayal J (2008) Lapse-time dependence of coda Q in the source region of the 1999 Chamoli earthquake. Bull Seismol Soc Am 98:2080–2086CrossRefGoogle Scholar
  58. Nazemi N, Pezeshk S, Sedaghati F (2017) Attenuation of Lg waves in the New Madrid seismic zone of the Central United States using the coda normalization method. Tectonophysics 712-713:623–633CrossRefGoogle Scholar
  59. Padhy S, Subhadra N, Kayal JR (2011) Frequency-dependent attenuation of body and coda waves in the Andaman Sea basin. Bull Seismol Soc Am 101:109–125CrossRefGoogle Scholar
  60. Payo G, Badal J, Canas J, Corchete V, Pujades L, Serón F (1990) Seismic attenuation in Iberia using the coda-Q method. Geophys J Int 103:135–145CrossRefGoogle Scholar
  61. Pezeshk S, Sedaghati F, Nazemi N (2018) Near source attenuation of high frequency body waves beneath the New Madrid seismic zone. J Seismol 22:455–470CrossRefGoogle Scholar
  62. Phillips SW, Aki K (1986) Site amplification of coda waves from local earthquakes in central California. Bull Seismol Soc Am 76:627–648Google Scholar
  63. Phillips SW, Hartse HE, Taylor SR, Randall GE (2000) 1 Hz Lg Q tomography in Central Asia. Geophy Research lett 27(20):3425–3428CrossRefGoogle Scholar
  64. Phillips WS, Hartse HE, Rutledge JT (2005) Amplitude ratio tomography for regional phase Q. Geophy Research Lett 32(21):1–4CrossRefGoogle Scholar
  65. Pujades LG, Canas JA, Egozcue JJ, Puigví MA, Gallart J, Lana X, Pous J, Casas A (1990) Coda-Q distribution in the Iberian Peninsula. Geophys J Int 100:285–301CrossRefGoogle Scholar
  66. Rahimi H, Hamzehloo H (2008) Lapse time and frequency-dependent attenuation of coda waves in the Zagros continental collision zone in southwestern Iran. J Geophys Eng 5:173–185CrossRefGoogle Scholar
  67. Rautian, T. G., and V. I. Khalturin (1978). The use of the coda for determination of the earthquak esource spectrum. Bull. Seismol. Soc. Am. 68, 923–948Google Scholar
  68. Roecker SW, Tucker B, King J, Hatzfeld D (1982) Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull Seismol Soc Am 72:129–149Google Scholar
  69. Sato H (1989) Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan. J Geophys Res 94:17,735–17,747CrossRefGoogle Scholar
  70. Sato H, Fehler FC (1998) Seismic wave propagation and scattering in the heterogeneous earth. American Institute of Physics Press, New YorkCrossRefGoogle Scholar
  71. Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous Earth, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  72. Sedaghati, F. (2018). Simulation of strong ground motions using the stochastic summation of small to moderate earthquakes as Green’s functions, Ph.D. dissertation, The University of Memphis, Memphis, TennesseeGoogle Scholar
  73. Sedaghati F, Pezeshk S (2016) Estimation of the coda-wave attenuation and geometrical spreading in the New Madrid seismic zone. Bull Seismol Soc Am 106:1482–1498CrossRefGoogle Scholar
  74. Sedaghati F, Pezeshk S (2017) Partially nonergodic empirical ground-motion models for predicting horizontal and vertical PGV, PGA, and 5% damped linear acceleration response spectra using data from the Iranian plateau. Bull Seismol Soc Am 107:934–948CrossRefGoogle Scholar
  75. Sedaghati F, Pezeshk S, Nazemi N (2018) Site amplification within the Mississippi embayment of the central United States: investigation of possible differences among various phases of seismic waves and presence of basin waves. Soil Dyn Earthq Eng 113:534–544CrossRefGoogle Scholar
  76. Sertçelik F (2012) Estimation of coda wave attenuation in the East Anatolia fault zone, Turkey. Pure Appl Geophys 169:1189–1204CrossRefGoogle Scholar
  77. Shengelia I, Javakhishvili Z, Jorjiashvili N (2011) Coda wave attenuation for three regions of Georgia (Sakartvelo) using local earthquakes. Bull Seismol Soc Am 101:2220–2230CrossRefGoogle Scholar
  78. Singh S, Herrmann B (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res 88:527–538CrossRefGoogle Scholar
  79. Singh C, Biswas R, Jaiswal N, Ravi Kumar M (2019) Spatial variations of coda wave attenuation in Andaman–Nicobar subduction zone. Geophys J Int 217(3):1515–1523CrossRefGoogle Scholar
  80. Sloan RA, Jackson JA, McKenzie D, Priestley K (2011) Earthquake depth distributions in Central Asia, and their relations with lithosphere thickness, shortening and extension. Geophys J Int 185(1):1–29CrossRefGoogle Scholar
  81. Steffen R, Steffen H, Jentzsch G (2011) A three-dimensional Moho depth model for the Tien Shan from EGM2008 gravity data. Tectonics 30(5):1–19CrossRefGoogle Scholar
  82. Tavakoli B, Sedaghati F, Pezeshk S (2018) An analytical effective point source-based distance conversion approach to mimic the effects of extended faults on seismic hazard assessment. Bull Seismol Soc Am 108(2):742–760CrossRefGoogle Scholar
  83. Tselentis GA (1993) Depth-dependent seismic attenuation in western Greece. Tectonophysics 225:523–528CrossRefGoogle Scholar
  84. Wennerberg L (1993) Multiple-scattering interpretation of coda-Q measurements. Bull Seismol Soc Am 83:279–290Google Scholar
  85. Woodgold CRD (1994) Coda Q in the Charlevoix, Quebec, region: lapse-time dependence and spatial and temporal comparisons. Bull Seismol Soc Am 84:1123–1131Google Scholar
  86. Wu CF (1986) Jackknife, bootstrap, and other resampling methods in regression analysis. Ann Math Stat 14(4):1261–1295Google Scholar
  87. Wu Q, Chapman MC, Beale JN, Shamsalsadati S (2016) Nearsource geometrical spreading in the central Virginia seismic zone determined from the aftershocks of the 2011 Mineral, Virginia, earthquake. Bull Seismol Soc Am 106(3):943–955CrossRefGoogle Scholar
  88. Xie J (2010) Can we improve estimates of seismological Q using a new “geometrical spreading” model? Pure Appl Geophys 167(10):1147–1162CrossRefGoogle Scholar
  89. Xie J, Fehler M (2009) Comment on “thirty years of confusion around scattering Q'?” by Igor B. Morozov. Seismol Res Lett 80(4):646–647CrossRefGoogle Scholar
  90. Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114:165–174CrossRefGoogle Scholar
  91. Zeng Y (1991) Compact solutions for multiple scattered wave energy in time domain. Bull Seismol Soc Am 81:1022–1029Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.AON | Impact ForecastingChicagoUSA
  2. 2.Department of Civil EngineeringThe University of MemphisMemphisUSA
  3. 3.International Institute of Earthquake Engineering and SeismologyTehranIran

Personalised recommendations