Advertisement

Improving C1 and C3 empirical Green’s functions from ambient seismic noise in NW Iran using RMS ratio stacking method

  • Mahsa SafarkhaniEmail author
  • Taghi Shirzad
Original Article
  • 29 Downloads

Abstract

The retrieval of stable and reliable empirical Green’s functions using ambient seismic noise plays a major role when studying the Earth’s structure at various scales. High-resolution noise correlation functions are obtained in the NW of Iran by processing techniques including dividing the continuously recorded raw data into short (i.e., 10 min) overlapping (i.e., 80%) time windows. We compare four stacking methods (i.e., linear, RMS, RMS ratio, and Nth-root stacking methods) to study robust and stable inter-station empirical Green’s functions. Our results indicate that the new RMS ratio method of stacking would be the optimal method to stack coherent signals. In other words, this method tackles problems including low signal-to-noise ratio (hereafter SNR) value, distortion of wave shape, and phase instability/unstable polarity treatment. In addition to noise correlation functions, we propose another strategy for the computation of the empirical Green’s functions. In this technique, the cross-correlation of scattered coda waves of the calculated noise correlation functions is performed individually. In addition to coda window length, we also investigate another effective parameter, the geometry of various virtual stations to obtain reliable empirical Green’s functions from the scattered coda waves of correlation functions with high SNR. The error of the velocities of Rayleigh wave empirical Green’s functions is on the order of approximately 0.6%, when compared to ambient seismic noise and scattered coda waves for a period band range of 3–10 s.

Keywords

Ambient seismic noise Cross-correlation RMS ratio stacking Scattered coda waves Virtual stations geometry Empirical Green’s functions 

Notes

Acknowledgments

The digital ambient seismic noise dataset has been collected by the Iranian Seismological Center (IrSC) at the University of Tehran/Iran (http://irsc.ut.ac.ir; not openly available to public; last accessed Feb. 2017). The earthquake waveform used in this study was obtained through the IrSC. All plots were also made using Generic Mapping Tools (GMT) version 4 (Wessel and Smith 1998; www.soest.hawaii.edu/gmt, last accessed May 2019). We would also like to thank the editor and four anonymous reviewers for their constructive comments and useful suggestions.

Funding information

This work was supported by the (FAPESP), Sao Paulo, Brazil (grant numbers 2016/20952-4).

References

  1. Baig AM, Campillo M, Brenguier F (2009) Denoising seismic noise cross correlations. J Geophys Res 114 , B08310.  https://doi.org/10.1029/2008JB006085
  2. Bakulin A, Mateeva A, Mehta K, Jorgensen P, Ferrandis J, Shina Herold I, Lopez J (2007) Virtual source applications to imaging and reservoir monitoring. Lead Edge 26:732–740CrossRefGoogle Scholar
  3. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260CrossRefGoogle Scholar
  4. Brandmayr E, Vlahovic G (2016) The upper crust of the Eastern Tennessee Seismic Zone: insights from potential fields inversion. Tectonophysics 688:148–156.  https://doi.org/10.1016/j.tecto.2016.09.035 CrossRefGoogle Scholar
  5. Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130.  https://doi.org/10.1038/ngeo104 CrossRefGoogle Scholar
  6. Bungum H, Capon J (1974) Coda pattern and multipath propagation of Rayleigh waves at NORSAR. Phys Earth Planet Inter 9(2):111–127CrossRefGoogle Scholar
  7. Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549CrossRefGoogle Scholar
  8. Capon J (1970) Analysis of Rayleigh-wave multipath propagation at Lasa. Bull Seismol Soc Am 60(5):1701–1731Google Scholar
  9. Cho KH, Herrmann RB, Ammon CJ, Lee K (2007) Imaging the upper crust of the Korean peninsula by surface-wave tomography. Bull Seismol Soc Am 97:198–207CrossRefGoogle Scholar
  10. Cupillard P, Stehly L, Romanowicz B (2011) The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise. Geophys J Int 184:1397–1414.  https://doi.org/10.1111/j.1365-246X.2010.04923.x CrossRefGoogle Scholar
  11. Froment B, Campillo M, Roux P, Gouédard P, Verdel A, Weaver RL (2010) Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 75(5):85–93.  https://doi.org/10.1190/1.3483102 CrossRefGoogle Scholar
  12. Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux P, Sánchez-Sesma FJ, Shapiro NM, Weaver RL (2008) Cross-correlation of random fields: mathematical approach and applications. Geophys Prospect 56:375–393CrossRefGoogle Scholar
  13. Ji C, Tsuboi S, Komatitsch D, Tromp J (2005) Rayleigh-wave multipathing along the west coast of North America. Bull Seismol Soc Am 95(6):2115–2124CrossRefGoogle Scholar
  14. Kanasewich ER, Alpaslan T, Hemmings CD (1973) Nth-root stack nonlinear multichannel filter. Geophysics 38:327–338CrossRefGoogle Scholar
  15. Landès M, Hubans F, Shapiro NM, Paul A, Campillo M (2010) Origin of deep ocean microseisms by using teleseismic body waves. J Geophys Res 115:B05302.  https://doi.org/10.1029/2009JB006918 CrossRefGoogle Scholar
  16. Lehujeur M, Vergne J, Schmittbuhl J, Maggi A (2015) Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France. Geothermal Energy 3.  https://doi.org/10.1186/s40517-014-0020-2
  17. Lehujeur M, Vergne J, Maggi A, Schmittbuhl J (2017) Ambient noise tomography with non-uniform noise sources and low aperture networks: case study of deep geothermal reservoirs in northern Alsace, France. Geophys J Int 208(1):193–210CrossRefGoogle Scholar
  18. Li Y, Wu Q, Pan J, Zhang F, Yu D (2013) An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet Sci Lett 377:367–377CrossRefGoogle Scholar
  19. Lin F-C, Moschetti MP, Ritzwoller MH (2008) Surface wave tomography of the Western United States from ambient seismic noise: Rayleigh and love wave phase velocity maps. Geophys J Int 173:281–298CrossRefGoogle Scholar
  20. Lin F-C, Tsai VC, Schmandt B, Duputel Z, Zhan Z (2013) Extracting seismic core phases with array interferometry. Geophys Res Lett 40(6):1049–1053.  https://doi.org/10.1002/grl.50237 CrossRefGoogle Scholar
  21. Ma S, Beroza GC (2012) Ambient-field Green’s functions from asynchronous seismic observations. Seismol Res Lett 39.  https://doi.org/10.1029/2011GL050755
  22. Mainsant G, Larose E, Bronnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: toward failure prediction. J Geophys Res 117.  https://doi.org/10.1029/2011JF002159
  23. McFadden PL, Drummond BJ, Kravis S (1986) The Nth-root stack: theory, applications, and examples. Geophysics 51:1879–1892CrossRefGoogle Scholar
  24. McFadden PL, Drummond BJ, Kravis S (1987) The Nth-root stack: a cheap and effective processing technique. Explor Geophys 18:135–137CrossRefGoogle Scholar
  25. Melo G, Malcolm A, Mikesell D, van Wijk K (2013) Using SVD for improved interferometric Green’s function retrieval. Geophys J Int 194:1596–1612.  https://doi.org/10.1093/gji/ggt172 CrossRefGoogle Scholar
  26. Mordret A, Shapiro NM, Singh SC, Roux P, Montagner J-P, Barkved OI (2013) Azimuthal anisotropy at Valhall: the Helmholtz equation approach. Geophys Res Lett 40:2636–2641CrossRefGoogle Scholar
  27. Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. J Geophys Res 78:876–885CrossRefGoogle Scholar
  28. Obermann A, Planès T, Larose E, Campillo M (2013) Imaging presumptive and corruptive structural and mechanical changes of a volcano with ambient seismic noise. J Geophys Res Solid Earth 118:6285–6294.  https://doi.org/10.1002/2013JB010399 CrossRefGoogle Scholar
  29. Pedersen HA, Krüger F, the SVEKALAPKO Seismic Tomography Working Group (2007) Influence of the seismic noise characteristics on noise correlations in the Baltic shield. Geophys J Int 168:197–210CrossRefGoogle Scholar
  30. Picozzi M, Parolai S, Bindi D, Strollo A (2009) Characterization of shallow geology by high-frequency seismic noise tomography. Geophys J Int 176:164–174.  https://doi.org/10.1111/j.1365-246X.2008.03966.x CrossRefGoogle Scholar
  31. Poli P, Pedersen HA, Campillo M, the POLENET/LAPNET Working Group (2013) Noise directivity and group velocity tomography in a region with small velocity contrasts: the northern Baltic shield. Geophys J Int 192(1):413–424CrossRefGoogle Scholar
  32. Poli P, Campillo M, Pedersen H, LAPNET Working Group (2012) Body-wave imaging of Earth’s mantle discontinuities from ambient seismic noise. Science 338:1063–1065.  https://doi.org/10.1126/science.1228194 CrossRefGoogle Scholar
  33. Prieto GA, Lawrence JF, Beroza GC (2009) Anelastic Earth structure from the coherency of the ambient seismic field. J Geophys Res 114.  https://doi.org/10.1029/2008JB006067
  34. Renalier F, Jongmans D, Campillo M, Bard P-Y (2010) Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J Geophys Res 115.  https://doi.org/10.1029/2009JF001538
  35. Roux P, Sabra KG, Kuperman WA, Roux A (2005) Ambient noise cross correlation in free space: theoretical approach. Acoust Soc Am 117(1):79–84CrossRefGoogle Scholar
  36. Safarkhani M, Shirzad T (2017) Investigation of scattered coda correlation functions from noise correlation functions, in retrieving optimized empirical Green’s functions in Azerbaijan Region, Iran. J Earth Space Phys (in Persian with abstract in English) 43(2):323–337.  https://doi.org/10.22059/jesphys.2017.60286 Google Scholar
  37. Seats JK, Lawrence JF, Prieto AG (2012) Improved ambient noise correlation functions using Welch’s method. Geophys J Int 188:513–523CrossRefGoogle Scholar
  38. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33, L21302.  https://doi.org/10.1029/2006GL027797
  39. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31, L07614.  https://doi.org/10.1029/2004GL019491
  40. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618CrossRefGoogle Scholar
  41. Sheng Y, Nakata N, Beroza GC (2018) On the nature of higher-order ambient seismic field correlations. J Geophys Res Solid Earth 123(9):7969–7982.  https://doi.org/10.1029/2018JB015937 CrossRefGoogle Scholar
  42. Shirzad T, Shomali ZH (2013) Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography. Geophys J Int 196:1162–1176.  https://doi.org/10.1093/gji/ggt449 CrossRefGoogle Scholar
  43. Shirzad T, Shomali ZH (2014) Extracting seismic body and Rayleigh waves from the ambient seismic noise using the rms-stacking method. Seismol Res Lett 86(1):173–180.  https://doi.org/10.1785/0220140123 CrossRefGoogle Scholar
  44. Shirzad T, Shomali ZH (2015) Extracting stable seismic core phases from ambient seismic noise. Bull Seismol Soc Am 106(1):307–312.  https://doi.org/10.1785/0120150031 CrossRefGoogle Scholar
  45. Shirzad T, Shomali ZH, Riahi M-A, Jarrahi M (2017) Near surface radial anisotropy in the Rigan area/SE Iran. Tectonophysics 694:23–34.  https://doi.org/10.1016/j.tecto.2016.11.036 CrossRefGoogle Scholar
  46. Shomali ZH, Shirzad T (2015) Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. J Seismol 19(1):191–200.  https://doi.org/10.1007/s10950-014-9458-8
  47. Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69, 046610.  https://doi.org/10.1103/PhysRevE.69.046610
  48. Spica Z, Legrand D, Iglesias A, Walter TR, Heimann S, Dahm T, Froger JL, Rémy D, Bonvalot S, West ME, Pardo MH (2015) Hydrothermal and magmatic reservoirs at Lazufre volcanic area, revealed by high-resolution seismic noise tomography. Earth Planet Sci Lett 421:27–38CrossRefGoogle Scholar
  49. Spica Z, Perton M, Calò M, Legrand D, Córdoba-Montiel F, Iglesias A (2016) 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3). Geophys J Int 206:1795–1813.  https://doi.org/10.1093/gji/ggw240 CrossRefGoogle Scholar
  50. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111, B10306.  https://doi.org/10.1029/2005JB004237
  51. Stehly L, Campillo M, Froment B, Weaver RL (2008) Reconstructing Green’s function by correlation of the coda of the correlation (C3) of ambient seismic noise. J Geophys Res 113, B11306.  https://doi.org/10.1029/2008JB005693
  52. Stehly L, Fry B, Campillo M, Shapiro NM, Guilbert J, Boschi L, Giardini D (2009) Tomography of the Alpine region from observations of seismic ambient noise. Geophys J Int 178(1):338–350CrossRefGoogle Scholar
  53. Wapenaar K (2004) Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93, 254301.  https://doi.org/10.1103/PhysRevLett.93.254301
  54. Wapenaar K, Draganov D, Snieder R, Campman X, Verdel A (2010) Tutorial on seismic interferometry: part 1—basic principles and applications. Geophysics 75(5):75A195–75A209CrossRefGoogle Scholar
  55. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13), 134301.  https://doi.org/10.1103/PhysRevLett.87.134301
  56. Weaver R, Froment B, Campillo M (2009) On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J Acoust Soc Am 126(4):1817–1826CrossRefGoogle Scholar
  57. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. Eos Trans AGU 79:579CrossRefGoogle Scholar
  58. Xia Y, Ni S, Tape C (2018) Multipathing Rayleigh waves from long-distance noise cross correlation along an ocean-continent boundary (Alaska to California). Geophys Res Lett 45:6051–6060CrossRefGoogle Scholar
  59. Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM (2007) Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 168:259–274CrossRefGoogle Scholar
  60. Zigone D, Ben-Zion Y, Campillo M, Roux P (2015) Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love waves. Pure Appl Geophys 172:1007–1032.  https://doi.org/10.1007/s00024-014-0872-1 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of GeophysicsUniversity of TehranTehranIran
  2. 2.Institute of Astronomy, Geophysics and Atmospheric ScienceUniversity of Sao PauloSao PauloBrazil

Personalised recommendations