Development of local magnitude scale for the Northern Punjab, Pakistan

  • Muhammad Naveed MushtaqEmail author
  • Muhammd Tahir
  • Muhammd Ali Shah
  • Fehmeeda Khanam
Original Article


We developed a local magnitude scale for the Northern Punjab (Potwar Plateau and Salt Range), using seismic data of CES (Centre for Earthquake Studies). The region is tectonically stable, but surrounded by active geological structures (i.e., Main Boundary Thrust, Sulaiman Range, and Jhelum Fault). The imparted stresses adjust both seismically (moderate to small magnitude earthquakes) and aseismically in decollement. Previously, Southern California magnitude scale was being used to determine local magnitude for compilation of seismic catalog. Difference in geology and tectonics between Southern California and Northern Punjab may lead to systematic errors in hazard assessment based on this catalog. To address this problem, we selected 231 seismic events for a period of 07 years with ML 2.0 and above, that correspond to 2800 records on 21 seismic stations. We chose data of seismic events with hypocentral distance less than 600 km and recorded on five stations at least. We then inverted the synthetic Wood-Anderson amplitudes of selected data for station and distance corrections. Accordingly, the new magnitude scale for Northern Punjab is given by the following: ML = logA + 0.869log(r) + 0.00115(r) − 1.53, where A is the amplitude in nanometers on synthetic Wood-Anderson seismograph and r is the hypocentral distance in kilometers. We observed lower attenuation of seismic waves in our study area as compared to Southern California. Lower standard deviation (i.e., reduction in variance to 45.4% ) in magnitude residuals shows that there is less deviation for newly developed scale as compared to that of Southern California scale. Values of station correction factors for different stations of local network vary between − 0.5 to + 0.5, which suggest variation in station site effects.


Local magnitude scale Attenuation Station correction factor Pakistan Hazard assesment 



We received significant help from Mr. Muhammad Tahir Iqbal in improving geological content of area, Mr. Bilal Saif regarding Cartography and Mr. Saleem Iqbal for script writing.


  1. Alsaker A, Kvamme L, Hansen R, Dahle A, Bungum H (1991) The M L scale in Norway. Bull Seismol Soc Am 81(2):379–398Google Scholar
  2. Argand E (1922) La tectonique de l’Asie. Conférence faite á Bruxelles, le 10 août 1922. In: Rep. Sess.-Int. Geol. Congr. 13, pp 170-372Google Scholar
  3. Bakun WH (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in central California. Bull Seismol Soc Am 74(2):439–458Google Scholar
  4. Bakun WH, Joyner WB (1984) The M L scale in central California. Bull Seismol Soc Am 74(5):1827–1843Google Scholar
  5. Banerjee P, Bürgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29(13):301–304CrossRefGoogle Scholar
  6. Banks C, Warburton J (1986) ‘Passive-roof’ duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J Struct Geol 8(3-4):229–237CrossRefGoogle Scholar
  7. Bendick R, McClusky S, Bilham R, Asfaw L, Klemperer S (2006) Distributed Nubia—Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophys J Int 165(1):303–310CrossRefGoogle Scholar
  8. Bernard M, Shen-Tu B, Holt W, Davis D (2000) Kinematics of active deformation in the Sulaiman Lobe and Range, Pakistan. J Geophys Res: Solid Earth 105(B6):13,253–13,279CrossRefGoogle Scholar
  9. Bilham R (2006) Dangerous tectonics, fragile buildings, and tough decisions. Science 311 (5769):1873–1875CrossRefGoogle Scholar
  10. Bindi D, Spallarossa D, Eva C, Cattaneo M (2005) Local and duration magnitudes in northwestern Italy, and seismic moment versus magnitude relationships. Bull Seismol Soc Am 95(2):592–604CrossRefGoogle Scholar
  11. Blisniuk PM, Sonder LJ, Lillie RJ (1998) Foreland normal fault control on northwest Himalayan thrust front development. Tectonics 17(5):766–779CrossRefGoogle Scholar
  12. Bobbio A, Vassallo M, Festa G (2009) A local magnitude scale for Southern Italy. Bull Seismol Soc Am 99(4):2461–2470CrossRefGoogle Scholar
  13. Booth DC (2007) An improved UK local magnitude scale from analysis of shear and Lg-wave amplitudes. Geophys J Int 169(2):593–601CrossRefGoogle Scholar
  14. Bormann P, Baumbach M, Bock G, Grosser H, Choy GL, Boatwright J (2002) Seismic sources and source parameters. IASPEI New Manual of Seismological Observatory Practice 1:1–94Google Scholar
  15. Bragato PL, Tento A (2005) Local magnitude in Northeastern Italy. Bull Seismol Soc Am 95 (2):579–591CrossRefGoogle Scholar
  16. Ebel JE (1982) ML Measurements for northeastern United States earthquakes. Bull Seismol Soc Am 72(4):1367–1378Google Scholar
  17. Farah A, Mirza MA, Ahmad MA, Butt MH (1977) Gravity field of the buried shield in the Punjab Plain, Pakistan. Geol Soc Am Bull 88(8):1147–1155CrossRefGoogle Scholar
  18. Gansser A (1964) Geology of the Himalayas. Wiley Interscience, New YorkGoogle Scholar
  19. Gansser A (1981) The geodynamic history of the Himalaya. Zagros Hindu Kush Himalaya Geodynamic Evolution, pp 111–121Google Scholar
  20. Ghosh A, Newman AV, Thomas AM, Farmer GT (2008) Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys Res Lett 35(1):L01301CrossRefGoogle Scholar
  21. Gutenberg Bu, Richter CF (1954) Seismicity of the earth and related phenomena. Princeton (NJ)Google Scholar
  22. Hadley DM, Helmberger DV, Orcutt JA (1982) Peak acceleration scaling studies. Bull Seismol Soc Am 72(3):959– 979Google Scholar
  23. Haines AJ (1981) A local magnitude scale for New Zealand earthquakes. Bull Seismol Soc Am 71 (1):275–294Google Scholar
  24. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350CrossRefGoogle Scholar
  25. Havskov J, Ottemöller L (2010) Location. In: Routine data processing in earthquake seismology, Springer, pp 101–149Google Scholar
  26. Hofstetter R, Beyth M (2003) The Afar Depression: interpretation of the 1960–2000 earthquakes. Geophys J Int 155(2):715–732CrossRefGoogle Scholar
  27. Hutton L, Boore DM (1987) The ML scale in Southern California. Bull Seismol Soc Am 77 (6):2074–2094Google Scholar
  28. Jennings PC, Kanamori H (1983) Effect of distance on local magnitudes found from strong-motion records. Bull Seismol Soc Am 73(1):265–280Google Scholar
  29. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095Google Scholar
  30. Kazmi AH, Rana RA (1982) Tectonic map of Pakistan, 1:2,000,000. Geological Survey of Pakistan, QuettaGoogle Scholar
  31. Keir D, Stuart G, Jackson A, Ayele A (2006) Local earthquake magnitude scale and seismicity rate for the Ethiopian rift. Bull Seismol Soc Am 96(6):2221–2230CrossRefGoogle Scholar
  32. Kılıç T, Ottemöller L, Havskov J, Yanık K, Kılıçarslan Ö, Alver F, Özyazıcıoğlu M (2017) Local magnitude scale for earthquakes in Turkey. J Seismol 21(1):35–46CrossRefGoogle Scholar
  33. Kim WY (1998) The ML scale in eastern North America. Bull Seismol Soc Am 88(4):935–951Google Scholar
  34. Kiratzi A, Papazachos B (1984) Magnitude scales for earthquakes in Greece. Bull Seismol Soc Am 74(3):969–985Google Scholar
  35. Langston CA, Brazier R, Nyblade AA, Owens TJ (1998) Local magnitude scale and seismicity rate for Tanzania, East Africa. Bull Seismol Soc Am 88(3):712–721Google Scholar
  36. Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83(B11):5331–5354CrossRefGoogle Scholar
  37. Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthq Res Inst Univ Tokyo 40:125– 173Google Scholar
  38. Molnar P (1984) Structure and tectonics of the Himalaya: constraints and implications of geophysical data. Annu Rev Earth Planet Sci 12(1):489–516CrossRefGoogle Scholar
  39. Nguyen LM, Lin TL, Wu YM, Huang BS, Chang CH, Huang WG, Le TS, Dinh VT (2011) The first ML scale for North of Vietnam. J Asian Earth Sci 40(1):279–286Google Scholar
  40. Powell CM, Conaghan P (1973) Plate tectonics and the Himalayas. Earth Planet Sci Lett 20 (1):1–12CrossRefGoogle Scholar
  41. Pujol J (2003) Determination of a local magnitude scale: a generalized inverse solution. Bull Seismol Soc Am 93(6):2758–2761CrossRefGoogle Scholar
  42. Quittmeyer RC, Farah A, Jacob KH (1979) The seismicity of Pakistan and its relation to surface faults. Geodynamics of Pakistan, pp 271–284Google Scholar
  43. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32Google Scholar
  44. Ristau J, Rogers GC, Cassidy JF (2005) Moment magnitude–local magnitude calibration for earthquakes in Western Canada. Bull Seismol Soc Am 95(5):1994–2000CrossRefGoogle Scholar
  45. Satyabala SP, Yang Z, Bilham R (2012) Stick–slip advance of the Kohat Plateau in Pakistan. Nat Geosci 5(2):147–150CrossRefGoogle Scholar
  46. Saunders I, Ottemöller L, Brandt MB, Fourie CJ (2013) Calibration of an m L scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009. J Seismol 17(2):437–451CrossRefGoogle Scholar
  47. Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11(5):925–943CrossRefGoogle Scholar
  48. Scholz C (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58(1):399–415Google Scholar
  49. Schorlemmer D, Wiemer S (2005) Earth science: microseismicity data forecast rupture area. Nature 434(7037):1086CrossRefGoogle Scholar
  50. Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res 109(B12)Google Scholar
  51. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542CrossRefGoogle Scholar
  52. Seeber L, Armbruster J (1979) Seismicity of the Hazara arc in northern Pakistan: decollement vs. basement faulting. Geodynamics of Pakistan 131:142Google Scholar
  53. Seeber L, Armbruster JG, Quittmeyer RC (1981) Seismicity and continental subduction in the Himalayan arc. Zagros Hindu Kush Himalaya Geodynamic Evolution, Geodyn Ser 3:215–242CrossRefGoogle Scholar
  54. Shoja-Taheri J, Naserieh S, Ghafoorian-Nasab AH (2008) An ML scale in northeastern Iran. Bull Seismol Soc Am 98(4):1975–1982CrossRefGoogle Scholar
  55. Slejko D, Rebez A (2002) Probabilistic seismic hazard assessment and deterministic ground shaking scenarios for Vittorio Veneto (NE Italy). Boll Geofis Teor Appl 43:263–280Google Scholar
  56. Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13(1):89–109CrossRefGoogle Scholar
  57. Takeo M, Abe K (1981) Local magnitude determination from near-field accelerograms. Zisin, J Seism Soc Jap 34:495–504Google Scholar
  58. Treloar PJ, Coward MP, Harris NB (1992) Himalayan-tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt. Precambrian Res 55(1-4):571–587CrossRefGoogle Scholar
  59. Urbancic T, Trifu C, Long J, Young R (1992) Space-time correlations of b values with stress release. Pure Appl Geophys 139(3-4):449–462CrossRefGoogle Scholar
  60. Uski M, Tuppurainen A (1996) A new local magnitude scale for the Finnish seismic network. Tectonophysics 261(1-3):23–37CrossRefGoogle Scholar
  61. Warren NW, Latham GV (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75(23):4455–4464CrossRefGoogle Scholar
  62. Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. In: Advances in Geophysics, vol 45, Elsevier, pp 259–VGoogle Scholar
  63. Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Int 31(4):341– 359CrossRefGoogle Scholar
  64. Wyss M, Sammis CG, Nadeau RM, Wiemer S (2004) Fractal dimension and b-value on creeping and locked patches of the San Andreas fault near Parkfield, California. Bull Seismol Soc Am 94 (2):410–421CrossRefGoogle Scholar
  65. Yeats RS, Khan SH, Akhtar M (1984) Late quaternary deformation of the Salt Range of Pakistan. Geol Soc Am Bull 95(8):958–966CrossRefGoogle Scholar
  66. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Muhammad Naveed Mushtaq
    • 1
    Email author
  • Muhammd Tahir
    • 1
  • Muhammd Ali Shah
    • 1
  • Fehmeeda Khanam
    • 1
  1. 1.Centre for Earthquake Studies IslamabadIslamabadPakistan

Personalised recommendations