Influence of Thermal-Treatment Effects on the Structural and Magnetic Properties of Sn1−xFexO2 Nanopowders Produced by Mechanical Milling

  • 18 Accesses


In this research work, iron-doped tin dioxide nanoparticles were successfully produced by high-energy ball-milling and their structural and magnetic properties were evaluated by means of room temperature X-ray diffraction, Mössbauer spectroscopy, and vibrating sample magnetometry. In order to evaluate the thermal stability of the compounds, samples were subjected to a thermal treatment and their structural and magnetic properties were studied. The nanoparticles were produced by processing SnO2 commercial powders together with doping amounts of Fe2O3 commercial powder in a high-energy planetary ball-mill. X-ray diffraction showed the presence of a single crystalline structure (that of the host compound) in all samples. Mössbauer spectroscopy confirmed that Fe3+ ions substitute for Sn4+. It was also used to show the disorder induced by the incorporation of iron ions in the structure of the host matrix. Magnetic measurements showed the coexistence of paramagnetism and a weak ferromagnetism. The interaction between singly ionized oxygen vacancies and doping Fe ions is the suggested reason behind the ferromagnetic ordering observed in this research work. The observed ferromagnetism is interpreted in terms of the bound magnetic polaron model and the charge transfer model. The insertion of the transition metal Fe into SnO2 matrix resulted in ferromagnetism at room temperature even at high dopant concentrations.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Othmen, W.B., Sdiri, N., Elhouichet, H., Férid, M.: Study of charge transport in Fe-doped SnO2 nanoparticles prepared by hydrothermal method. Mater. Sci. Semicon. Proc. 52, 46–54 (2016)

  2. 2.

    Mehraj, S., Ansari, M.S.: Alimuddin: Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2, diluted magnetic semiconductor nanostructures. Phys. E. 65, 84–92 (2015)

  3. 3.

    Aragón, F. H., Coaquira, J.A.H., Nagamine, L.C.C.M., Cohen, R., Silva, S.W., Morais, P.C.: Thermal-annealing effects on the structural and magnetic properties of 10% Fe-doped SnO2 nanoparticles synthetized by a polymer precursor method. J. Mag. and Magn. Mater. 375, 74 (2015)

  4. 4.

    Ferrari, S., Pampillo, L.G., Saccone, F.D.: Magnetic properties and environment sites in Fe doped SnO2 nanoparticles. Mater. Chem. Phys. 177, 206 (2016)

  5. 5.

    Feng, Y., Ji, W.-X., Huang, B. -J., Chen, X.-L., Li, F., Li, P., Zhang, C.-W., Wang, P. -J.: The magnetic and optical properties of 3d transition metal doped SnO2 nanosheets. RSC Adv. 5, 24306–24312 (2015)

  6. 6.

    Pereira, M.S., Lima, F.A.S., Ribeiro, T.S., Silva, M.R., Almeida, R.Q., Barros, E.B., Vasconcelos, I.F.: Application of Fe-doped SnO2 nanoparticles in organic solar cells with enhanced stability. Opt. Mater. 64, 548 (2017)

  7. 7.

    Mohagheghi, M.M.B., Yazdi, S.T., Mousavi, M.: Magneto-transport and magneto-optical studies on SnO2 transparent semiconducting thin films alloyed with Mn over a wide range of concentration. Appl. Phys. A 124, 274 (2018)

  8. 8.

    Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S.-Y., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001)

  9. 9.

    Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988 (2001)

  10. 10.

    Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Das Sarma, S., Drew, H.D., Greene, R.L., Venkatesan, T.: High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 77205 (2003)

  11. 11.

    Beltrán, J.J., Barrero, C.A., Punnoose, A.: Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 17, 15284 (2015)

  12. 12.

    Aragón, F.H., Coaquira, J.A.H., Gonzalez, I., Nagamine, L.C.C.M., Macedo, W.A.A., Morais, P.C.: Fe doping effect on the structural, magnetic and surface properties of SnO2 nanoparticles prepared by a polymer precursor method. J. Phys. D: Appl. Phys. 49, 155002 (2016)

  13. 13.

    Pereira, M.S., Ribeiro, T.S., Lima, F.A.S., Santos, L.P.M., Silva, C.B., Freire, P.T.C., Vasconcelos, I.F.: Synthesis and properties of Sn1−xFexO 2 nanoparticles obtained by a proteic sol–gel method. J. Nanopart. Res. 20, 212 (2018)

  14. 14.

    Choudhury, B., Verma, R., Choudhury, A.: Oxygen defect assisted paramagnetic to ferromagnetic conversion in Fe doped TiO2 nanoparticles. RSC Adv. 4, 29314 (2014)

  15. 15.

    Chang, C. -H., Gong, M., Dey, S., Liu, F., Castro, R.H.R.: Thermodynamic stability of SnO2 nanoparticles: The role of interface energies and dopants. J. Phys. Chem. C 119, 6389 (2015)

  16. 16.

    Katyiyar, R.S., Dawson, P., Hargreave, M.M., Wilkinson, G.R.: Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO2. J. Phys. C: Solid St. Phys. 4, 2421 (1971)

  17. 17.

    Pereira, M.S., Lima, F.A.S., Silva, C.B., Freire, P.T.C., Vasconcelos, I.F.: Structural, morphological and optical properties of SnO2 nanoparticles obtained by a proteic sol-gel method and their application in dye-sensitized solar cells. J. Sol-Gel Sci. Technol. 84, 206 (2017)

  18. 18.

    Sun, J., Sun, P., Zhang, D., Xu, J., Liang, X., Liu, F., Lu, G.: Growth of SnO2 nanowire arrays by ultrasonic spray pyrolysis and their gas sensing performance. RSC Adv. 4, 43429 (2014)

  19. 19.

    Mueller, F., Bresser, D., Chakravadhanula, V.S.K., Passerini, S.: Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. J. Power Sources 299, 398 (2015)

  20. 20.

    Ribeiro, T.S., Sasaki, J.M., Vasconcelos, I.F.: Structural disorder of ball-milled, nanosized, Fe-doped SnO2: X-ray diffraction and Mössbauer spectroscopy characterization. J. Mater. Sci. 47, 2630 (2012)

  21. 21.

    Carneiro, J.O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C.J., Lanceros-Méndez, S., Teixeira, V.: Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J. Mater. Sci. 49, 7476 (2014)

  22. 22.

    Navarro, A.M.M., Torres, C.E.R., Cabrera, A.F., Weissmann, M., Nomura, K., Errico, L.A.: Ab initio study of the ferromagnetic response, local structure, and hyperfine properties of Fe-doped SnO2s. J. Phys. Chem. C 119, 5596 (2015)

  23. 23.

    Inpasalini, M.S., Choubey, R.K., Mukherjee, S.: Evidence of bound magnetic polaron-mediated weak ferromagnetism in co-doped SnO2 nanocrystals: Microstructural, optical, hyperfine, and magnetic investigations. J. Elect. Mater. 45, 3562–3569 (2016)

  24. 24.

    Inpasalini, M.S., Sharma, L.K., Roychowdhury, A., Das, D., Mukherjee, S.: Influence of magnetic ion doping on structural, optical, magnetic and hyperfine properties of nanocrystalline SnO2 based dilute magnetic semiconductors. J. Mater. Sci.: Mater. Electron 28, 3285–3292 (2017)

  25. 25.

    Kuppan, M., Kaleemulla, S., Rao, N.M., Krishna, N.S., Begam, M.R., Reddy, D.S.: Physical properties of Sn1−xFexO 2 powders using solid state reaction. J. Supercond. Nov. Magn. 27, 1315–1321 (2014)

  26. 26.

    Torres, C.E.R., Cabrera, A.F., Sánchez, F.H.: Magnetic behavior of nanoclusters of Fe-doped SnO2. Physica B 389, 176 (2007)

  27. 27.

    Calderón, M.J., Das Sarma, S.: Theory of carrier mediated ferromagnetism in dilute magnetic oxides. Ann. Phys. 322, 2618 (2007)

  28. 28.

    Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

  29. 29.

    Coey, C.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

  30. 30.

    Coey, C.M.D., Wongsaprom, K., Alaria, J., Venkatesan, M.: Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D:, Appl. Phys. 41, 134012 (2008)

  31. 31.

    Coey, C.M.D., Stamenov, P., Gunning, R.D., Venkatesan, M., Paul, K.: Ferromagnetism in defect-ridden oxides and related materials. J. Phys. 12, 53025 (2010)

  32. 32.

    Tolea, F., Grecu, M.N., Kuncser, V., Constantinescu, S.G., Ghica, D.: On the role of Fe ions on magnetic properties of doped SnO2 nanoparticles. Appl. Phys. Lett. 106, 142404 (2015)

  33. 33.

    Rietveld, H.M.: Line Profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151 (1967)

  34. 34.

    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst 2, 65 (1969)

  35. 35.

    Toby, B.H.: EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210 (2001)

  36. 36.

    Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)

  37. 37.

    Beltran, J.J., Sánchez, L.C., Osorio, J., Tirado, L., Baggio-Saitovitch, E.M., Barrero, C.A.: Crystallographic and magnetic properties of Fe-doped SnO2 nanopowders obtained by a sol–gel method. J. Mater. Sci. 45, 5002–5011 (2010)

  38. 38.

    Nomura, K., Barrero, C.A., Sakuma, J., Takeda, M.: Room-temperature ferromagnetism of sol-gel-synthesized Sn\(_{1-x}^{57}\)FexO 2−δ powders. Phys. Rev. B 75, 184411 (2007)

Download references

Author information

Correspondence to Maurício S. Pereira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.S., Mendes, G.M.S.L., Ribeiro, T.S. et al. Influence of Thermal-Treatment Effects on the Structural and Magnetic Properties of Sn1−xFexO2 Nanopowders Produced by Mechanical Milling. J Supercond Nov Magn (2020) doi:10.1007/s10948-020-05420-6

Download citation


  • Sn1−xFexO 2 nanoparticles
  • Oxide dilute dilute semiconductors
  • High-energy ball-milling
  • Structural and magnetic properties