The Effect of Zinc on the Structural, Electrical, and Mechanical Properties of YBCO-123 Superconducting Nanoparticles Prepared by an Acetate-Based Sol-Gel Process

  • E. Asikuzun
  • O. OzturkEmail author
  • G. A. Aydemir
  • A. T. Tasci
Original Paper


In this study, zinc (Zn)-doped YBaCuO (YBCO)-123-based high-temperature superconducting samples were produced using the sol-gel method, which is commonly used for preparing nanosize materials. Zn ions were substituted by Cu ions (YBa2Cu3-xZnxO), and Zn doping effects on structural, electrical, and mechanical properties of the YBCO-123 superconductors were examined in detail. Undoped sample was prepared under same conditions. X-ray diffraction analysis (XRD) was used to determine phase analysis and lattice parameters of the superconducting samples. To analyze the microstructure properties, scanning electron microscope (SEM) measurements were performed. Resistivity and microhardness measurements were also carried out for superconducting and mechanic properties, respectively. Vickers microhardness, young modulus, fracture toughness, and yield strength values of the samples were calculated. Microhardness measurements were analyzed using the Kick’s law, proportional sample resistance (PSR) model, EPD model, the Hays-Kendall (HK) approach, and indentation-induced cracking (IIC) model.


YBCO Zn Sol-gel method Superconducting IIC model XRD 


Funding Information

This study was supported by the Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KÜ-BAP01/2016-21. Besides, we also thank the Kastamonu University Research and Application Center for the supports.


  1. 1.
    Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H.: Preparation, structure, and properties of the superconducting compound series Bi2Sr2Can-1CunOy with n=1, 2 and 3. Phys. Rev. B. 38, 2504 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Tosun, M., Ataoglu, S., Arda, L., Ozturk, O., Asikuzun, E., Akcan, D., Çakıroglu, O.: Structural and mechanical properties of ZnMgO nanoparticles. J. Mater. Sci. Eng. A. 590, 416–422 (2014)CrossRefGoogle Scholar
  3. 3.
    Fossheim, K., Sudbo, A.: Superconductivity Physics and Applications, pp. 37–39. John Wiley & Sons, England (2004)CrossRefGoogle Scholar
  4. 4.
    Gaganidze, E., Halbritter, J.: Morphology and transport properties of Ca-doped superconducting epitaxial YBCO films. Supercond. Sci. Technol. 17, 1346–1352 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Abraham Godlyn, A., Manikandan, A., Manikandan, E., Jaganathan, S.K., Baykal, A., Renganathan, S.P.: Enhanced opto-magneto properties of NixMg1-xFe2O4 (0.0 < x < 1.0) ferrites nano-catalysts. J. Nanoelectron. Optoelectron. 12, 1326–1333 (2017)CrossRefGoogle Scholar
  6. 6.
    Slimani, Y., Baykal, A., Manikandan, A.: Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn. Mater. 458, 204–212 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Asiri, S., Sertkol, M., Guner, S., Gungunes, H., Batoo, K.M., Salehf, T.A., Sozerig, H., Almessierea, M.A., Manikandanh, A., Baykal, A.: Hydrothermal synthesis of CoyZnyMn1-2yFe2O4 nanoferrites: magneto-optical investigation. Ceram. Int. 44, 5751–5759 (2018)CrossRefGoogle Scholar
  8. 8.
    Hott, R., Rietschel, H.: Applied Superconductivity Status Report Forschungszentrum Karlsruhe. (1988)Google Scholar
  9. 9.
    Putilin, S.N., Antipov, E.V., Chmaissen, O., Marezio, M.: Superconductivity at 94 K in HgBa2CuO4+d. Nature. 362, 226 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Saxena, A.K.: High-Temperature Superconductors, pp. 123–210. Springer Heidelberg Dordecht, New York (2010)CrossRefGoogle Scholar
  11. 11.
    Silambarasu, A., Manikandan, A., Balakrishnan, K.: Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nanocatalysts. J. Supercond. Nov. Magn. 30, 2631–2640 (2017)CrossRefGoogle Scholar
  12. 12.
    Hema, E., Manikandan, A., Gayathri, M., Durka, M., Antony Arul, S., Venkatraman, B.R.: The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4nanoparticles. J. Nanosci. Nanotechnol. 16, 5929–5943 (2016)CrossRefGoogle Scholar
  13. 13.
    Siddheswaran, R., Mangalaraja, R.V., Avila, R.E., Manikandan, D., Jeyanthi, C.E., Ananthakumar, S.: Evaluation of mechanical hardness and fracture toughness of co and Al co-doped ZnO. Mat. Sci. Eng. A. 558, 456–461 (2012)CrossRefGoogle Scholar
  14. 14.
    Rajkovic, V., Bozic, D., Devecerski, A., Jovanovic, M.T.: Characteristic of copper matrix simultaneously reinforced with nano-and micro-sized Al2O3 particles. Mater. Charact. 67, 129–137 (2012)CrossRefGoogle Scholar
  15. 15.
    Shun, T.T., Chang, L.Y., Shiu, M.H.: Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Mat.Charac. 70, 63–67 (2012)CrossRefGoogle Scholar
  16. 16.
    Arda, L., Ozturk, O., Asikuzun, E., Ataoglu, S.: Structural and mechanical properties of transition metals doped ZnMgO nanoparticles. Powder Technol. 235, 479–484 (2013)CrossRefGoogle Scholar
  17. 17.
    Maria Lumina Sonia, M., Anand, S., Maria Vinosel, V., Asisi Janifer, M., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Asiri, S., Sertkol, M., Güngüneş, H., Amir, M.D., Manikandan, A., Ercan, I., Baykal, A.: The temperature effect on magnetic properties of NiFe2O4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 28, 1587–1597 (2018)CrossRefGoogle Scholar
  19. 19.
    Asikuzun, E.: Production procedure and characterization of Zn-doped Y-123 superconducting samples prepared by sol-gel method. J. Supercond. Nov. Magn. 31, 3509–3514 (2018)CrossRefGoogle Scholar
  20. 20.
    Josephson, B.D.: Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)ADSCrossRefGoogle Scholar
  21. 21.
    Pippard, A.B.: The coherence concept in superconductivity. Physica. 19, 765–774 (1953)ADSCrossRefGoogle Scholar
  22. 22.
    Tosun, M., Ataoğlu, S., Arda, L., Öztürk, Ö., Aşıkuzun, E., Akcan, D., Çakıroğlu, O.: Structural and mechanical properties of ZnMgO nanoparticles. J. Mater. Sci. Eng. A. 590, 416–422 (2014)CrossRefGoogle Scholar
  23. 23.
    Ozturk, O., Cetinkara, H.A., Asikuzun, E., Akdogan, M., Yilmazlar, M., Terzioglu, C.: Investigation of mechanical and superconducting properties of iron diffusion-doped Bi-2223 superconductors. J. Mater. Sci. Mater. Electron. 22, 1501–1508 (2011)CrossRefGoogle Scholar
  24. 24.
    Polinger, V., Haskel, D., Stern, E.A.: John-Teller Impurity States in LaSrCuO:XAFS Evidence and Implications for High Tc Superconductivity. (1998)Google Scholar
  25. 25.
    Bednorz, J.G., Müller, K.A.: Possible high T c superconductivity in the Ba−La−cu−O system. Z. Phys. B. 64, 189–193 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    Sheng, Z.Z., Hermann, A.M.: Superconductivity in the rare-earth-free Tlδ-Baδ-Cud-O system above liquid-nitrogen tempature. Nature. 332, 55 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    Kumakura, H., Togano, K., Uehara, M., Maeda, H., Takahasni, K., Nakao, M.: Properties and Microstructure of Sintered High-T c Bi-Sr-Ca-Cu-O and Tl-Ca-Ba-Cu-O Oxides. IEEE Transact. Magn. 25, 2546–2549 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Sangwal, K.: On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000)CrossRefGoogle Scholar
  29. 29.
    Rose-Innes, A.C., Rhoderic, E.H.: Introduction to superconductivity. New York Pergamon. 5 (1978)Google Scholar
  30. 30.
    Hays, C., Kendall, E.G.: An analysis of Knoop microhardness. Metallography. 6, 275–282 (1973)CrossRefGoogle Scholar
  31. 31.
    Bull, S.J., Page, T.F., Yoffe Philos, E.H.: An explanation of the indentation size effect in ceramics. Mag. Lett. 59, 281–288 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    Awad, R., Abou Aly, A.I., Kamal, M., Anas, M.: Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr. J. Supercond. Nov. Magn. 24, 1947–1956 (2011)CrossRefGoogle Scholar
  33. 33.
    Gong, J., Wu, J., Guan, Z.: Examination of the indentation size effect in low-load vickers hardness testing of ceramics. J. Eur. Ceram. Soc. 19, 2625–2631 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. Asikuzun
    • 1
    • 2
  • O. Ozturk
    • 2
    • 3
    Email author
  • G. A. Aydemir
    • 4
  • A. T. Tasci
    • 3
  1. 1.Faculty of Engineering and Architecture, Department of Metallurgical and Materials EngineeringKastamonu UniversityKastamonuTurkey
  2. 2.Research and Application CenterKastamonu UniversityKastamonuTurkey
  3. 3.Faculty of Engineering and Architecture, Department of Electrical and Electronics EngineeringKastamonu UniversityKastamonuTurkey
  4. 4.Institute of Science and Technology, Department of PhysicsKastamonu UniversityKastamonuTurkey

Personalised recommendations