Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 12, pp 3789–3795 | Cite as

Lifthitz Transition and Shadow Gap in Li(Fe1−xCox)As Investigated by STM/STS

  • Ruizhe LiuEmail author
  • Zhiyang Ye
  • Jihui Wang
  • Limin Liu
Original Paper


Recently, APRES experiments reported a superconducting (SC) gap opened on a shallow insulating band in Co-doped LiFeAs (Miao et al. 6:6056, 2015). Theoretically, this particular SC gap is characterized by asymmetric density of states (DOS) and vanishing of SC coherence peak, addressed as shadow gap. Using the scanning tunneling microscopy/spectroscopy (STM/STS), 1% and 3% Co-doped LiFeAs were studied. The Co dopants were atomically resolved. STS results at the Co sites on both samples showed no bound states. Negligible difference between spectra at Co sites and defect-free area was observed, suggesting weak impurity potentials of the Co dopants. Similar to LiFeAs, two SC coherence peaks at Δα = 5.6 meV and Δβ = 2.5 meV were observed in STS spectra of the 1% doped sample, which were the SC gaps of the inner hole band α and the outer hole band β. In the SC state, spectra of 3% Co-doped sample showed a broad peak at E1 = − 7.2 meV and other two peaks at ± 3.9 meV. Above Tc, the peak at E1 shifts to − 4.8 meV, and the peaks at ± 3.9 meV vanish. We showed that the distinct difference of STS results in 1% and 3% Co-doped LiFeAs was caused by Lifthitz transition and shadow gap on the shallow band. By fitting the spectra at low energies, we found the anisotropy of the β band was greatly increased when shadow gap opens on the shallow α band.


High-Tc superconductor Iron-based superconductor LiFe1−xCoxAs Shadow gap Lifshitz transition Scanning tunneling microscopy 



This work was supported by the National Natural Science Foundation of China under Grant No. 11227903, Priority Research Program B of Chinese Academy of Sciences under Grant No. Y4VX092X81, and the State of Texas through Texas Center for Superconductivity at University of Houston (TcSUH).


  1. 1.
    Miao, H., Qian, T., Shi, X., Richard, P., Kim, T., Hoesch, M., Xing, L., Wang, X.C., Jin, C.Q., Hu, J.P.: Observation of strong electron pairing on bands without fermi surfaces in LiFe1−xCoxAs. Nat. Commun. 6, 6056 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Umezawa, K., Li, Y., Miao, H., Nakayama, K., Liu, Z.H., Richard, P., Sato, T., He, J., Wang, D.M., Chen, G.: Unconventional anisotropic s-wave superconducting gaps of the LiFeAs iron-pnictide superconductor. Phys. Rev. Lett. 108(3), 037002 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Borisenko, S.V., Zabolotnyy, V.B., Evtushinsky, D.V., Kim, T.K., Morozov, I.V., Yaresko, A.N., Kordyuk, A.A., Behr, G., Vasiliev, A., Follath, R., Büchner, B.: Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105 (6), 067002 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Aswartham, S., Behr, G., Harnagea, L., Bombor, D., Bachmann, A., Morozov, I., Zabolotnyy, V., Kordyuk, A., Kim, T., Evtushinsky, D.: Suppressed superconductivity in charge-doped li (fe 1? x co x) as single crystals. Phys. Rev. B 84(5), 054534 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Dai, Y., Miao, H., Xing, L., Wang, X., Wang, P., Xiao, H., Qian, T., Richard, P., Qiu, X., Yu, W.: Spin-fluctuation-induced non-fermi-liquid behavior with suppressed superconductivity in life 1? x co x as. Phys. Rev. X 5(3), 031035 (2015)Google Scholar
  6. 6.
    Li, Y., Yin, Z., Wang, X., Tam, D.W., Abernathy, D., Podlesnyak, A., Zhang, C., Wang, M., Xing, L., Jin, C.: Orbital selecti-ve spin excitations and their impact on superconductivity of LiFe1−xCo xAs. Phys. Rev. Lett. 116(24), 247001 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Miao, H., Wang, L.M., Richard, P., Wu, S.F., Ma, J., Qian, T., Xing, L.Y., Wang, X.C., Jin, C.Q., Chou, C.P.: Coexistence of orbital degeneracy lifting and superconductivity in iron-based superconductors. Phys. Rev. B 89(22), 220503 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Xing, L., Miao, H., Wang, X., Ma, J., Liu, Q., Deng, Z., Ding, H., Jin, C.: The anomaly cu doping effects on LiFeAs superconductors. J. Phys-Condens. Mat. 26(43), 435703 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Ye, Z., Zhang, Y., Chen, F., Xu, M., Jiang, J., Niu, X., Wen, C., Xing, L., Wang, X., Jin, C.: Extraordinary doping effects on quasiparticle scattering and bandwidth in iron-based superconductors. Phys. Rev. X 4(3), 031041 (2014)Google Scholar
  10. 10.
    Lifshitz, I.: Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11(5), 1130–1135 (1960)Google Scholar
  11. 11.
    Leong, Z., Phillips, P.: Effects of coulomb interactions on the superconducting gaps in iron-based superconductors. Phys. Rev. B 93(15), 155159 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Hu, L.H., Chen, W.Q., Zhang, F.C.: Cooper pairing in the insulating valence band in iron-based superconductors. Phys. Rev. B 91(16), 161108 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, X., Maiti, S., Linscheid, A., Hirschfeld, P.: Electron pairing in the presence of incipient bands in iron-based superconductors. Phys. Rev. B 92(22), 224514 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Bang, Y.: A shadow gap in the over-doped (Ba1−xK x)Fe 2As 2 compound. New J. Phys. 16(2), 023029 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Koshelev, A., Matveev, K.: Anomalous density of states in multiband superconductors near the lifshitz transition. Phys. Rev. B 90(14), 140505 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Chi, S., Aluru, R., Singh, U.R., Liang, R., Hardy, W.N., Bonn, D., Kreisel, A., Andersen, B.M., Nelson, R., Berlijn, T.: Impact of iron-site defects on superconductivity in LiFeAs. Phys. Rev. B 94 (13), 134515 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Grothe, S., Chi, S., Dosanjh, P., Liang, R., Hardy, W.N., Burke, S.A., Bonn, D.A., Pennec, Y.: Bound states of defects in superconducting LiFeAs studied by scanning tunneling spectroscopy. Phys. Rev. B 86(17), 174503 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Allan, M., Rost, A., Mackenzie, A., Xie, Y., Davis, J., Kihou, K., Lee, C., Iyo, A., Eisaki, H., Chuang, T.M.: Anisotropic energy gaps of iron-based superconductivity from intraband quasiparticle interference in LiFeAs. Science 336(6081), 563–567 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Chi, S., Grothe, S., Liang, R., Dosanjh, P., Hardy, W., Burke, S., Bonn, D., Pennec, Y.: Scanning tunneling spectroscopy of superconducting LiFeAs single crystals: evidence for two nodeless energy gaps and coupling to a bosonic mode. Phys. Rev. Lett. 109(8), 087002 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Chi, S., Johnston, S., Levy, G., Grothe, S., Szedlak, R., Ludbrook, B., Liang, R., Dosanjh, P., Burke, S.A., Damascelli, A., Bonn, D.A., Hardy, W.N., Pennec, Y.: Sign inversion in the superconducting order parameter of LiFeAs inferred from Bogoliubov quasiparticle interference. Phys. Rev. B 89(10), 104522 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Hanaguri, T., Kitagawa, K., Matsubayashi, K., Mazaki, Y., Uwatoko, Y., Takagi, H.: Scanning tunneling microscopy/spectroscopy of vortices in lifeas. Phys. Rev. B 85(21), 214505 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Mazin, I., Singh, D.J., Johannes, M., Du, M.H.: Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xF x. Phys. Rev. Lett. 101(5), 057003 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Hirschfeld, P., Korshunov, M., Mazin, I.: Gap symmetry and structure of fe-based superconductors. Rep. Prog. Phys 74(12), 124508 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Stewart, G.: Superconductivity in iron compounds. Rev. Mod. Phys. 83(4), 1589 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Yang, H., Wang, Z., Fang, D., Li, S., Kariyado, T., Chen, G., Ogata, M., Das, T., Balatsky, A., Wen, H.H.: Unexpected weak spatial variation in the local density of states induced by individual co impurity atoms in superconducting Na(Fe1−xCo x)As crystals revealed by scanning tunneling spectroscopy. Phys. Rev. B 86(21), 214512 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Gastiasoro, M.N., Hirschfeld, P., Andersen, B.M.: Impurity states and cooperative magnetic order in fe-based superconductors. Phys. Rev. B 88(22), 220509 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Dynes, R.C., Narayanamurti, V., Garno, J.P.: Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41(21), 1509–1512 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    Schrieffer, J.R.: Theory of Superconductivity. CRC Press, Boca Raton (2018)CrossRefGoogle Scholar
  29. 29.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Texas Center for SuperconductivityUniversity of HoustonHoustonUSA

Personalised recommendations