Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3385–3395 | Cite as

Research on Superconducting Magnet in a Superconducting Synchronous Generator

  • Cheng Wen
  • Junyu Liu
  • Zhiqiang YuEmail author
  • Jin Liu
  • Zhiyan Zhao
  • Jing Wang
Original Paper
  • 76 Downloads

Abstract

Design and test of superconducting magnet (SM) for a superconducting synchronous generator (SSG) are studied in this paper. First, a suitable superconducting material is selected to make SM by analyzing the characteristics and application background of the five practical superconducting materials, and the applicability and feasibility of the selected superconducting materials are demonstrated. Second, the initial structural parameters of the SM are obtained by finite element method (FEM). In addition, the influence of structural parameters of SM on the performance of SSG is analyzed by simulation. Then, an optimal algorithm combining response surface methodology (RSM) and particle swarm optimization (PSO) is proposed to optimize the structure of SM in order to give full play to the advantages of SM. The simulated results verify that the proposed optimal algorithm is feasible and effective. Finally, the prototype of SM is made by the optimized size, and the SM is tested at a low temperature to obtain the critical temperature and critical current of the SM; the experimental results verify that the designed SM can meet the requirements of SSG.

Keywords

MgB2 Superconducting magnet Superconducting synchronous generator Finite element method 

Notes

Funding Information

This work is financially supported by the National Natural Science Foundation of China under Grant 51807124 and 11872257, Natural Science Foundation of Hebei Province of China under Grants E2018210162, E2018210144 and E2016210104, and Department of Education of Hebei Province of China under Grant ZD2017069.

References

  1. 1.
    Hu, S., Xie, B., Li, Y., Gao, X.: A power factor-oriented railway power flow controller for power quality improvement in electrical railway power system. IEEE Trans. Ind. Electron. 64(2), 1167–1177 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Evzelman, M., Muneeb Ur Rehman, M., Hathaway, K.: Active balancing system for electric vehicles with incorporated low-voltage bus. IEEE Trans. Power Electron. 31(11), 7887–7895 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Kails, K., Li, Q., Mueller, M.: Novel model of stator design to reduce the mass of superconducting generators. Supercond. Sci. Technol. 31(5), 055009 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Yan, S., Wang, M.-H., Yang, T.-B., Tan, S.-C.: Achieving multiple functions of three-phase electric springs in unbalanced three-phase power systems using the instantaneous power theory. IEEE Trans. Power Electron. 33(7), 5784–5795 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Qu, R., Liu, Y., Wang, J.: Review of superconducting generator topologies for direct-drive wind turbines. IEEE Trans. Appl. Supercond. 23(3), 5201108 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Fuger, R., Matsekh, A., Kells, J., Sercombe, D.B.T., Guina, A.: A superconducting homopolar motor and generator-new approaches. Supercond. Sci. Technol. 29(3), 034001 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Pan, A.V., MacDonald, L., Baiej, H.: Theoretical consideration of superconducting coils for compact superconducting magnetic energy storage systems. IEEE Trans. Appl. Supercond. 26(3), 5700905 (2016)CrossRefGoogle Scholar
  8. 8.
    Cui, C., Cheng, J., Chen, S., Li, L.: Design and test of superconducting persistent current switch for experimental Nb3Sn superconducting magnet. IEEE Trans. Appl. Supercond. 26(4), 0605704 (2016)Google Scholar
  9. 9.
    Sung, H.-J., Park, M., Go, B.-S., Yu, I.-K.: A study on the required performance of a 2G HTS wire for HTS wind power generators. Supercond. Sci. Technol. 29(5), 054001 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Bladber, B.: Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 19(5), 1184–1194 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Jia, S., Qu, R., Li, J.: A novel Vernier reluctance fully superconducting direct drive synchronous generator with concentrated windings for wind power application. IEEE Trans. Appl. Supercond. 26(7), 5207205 (2016)Google Scholar
  12. 12.
    Liu, Y., Qu, J., Schreiner, F., Lao, M.: Design of a superconducting DC demonstrator for wind generators. IEEE Trans. Energy Convers. 33(4), 1955–1964 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Yu, D., Liu, H., Zhang, X., Gong, T.: Critical current simulation and measurement of second generation, high-temperature superconducting coil under external magnetic field. Materials. 11(3), 339 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Saruwatari, M., Yun, K., lwakuma, M., Tamura, K.: Design study of 15-MW fully superconducting generators for offshore wind turbine. IEEE Trans. Appl. Supercond. 26(4), 5206805 (2016)CrossRefGoogle Scholar
  15. 15.
    Marino, I., Pujana, A., Sarmiento, G., Sanz, S., Merino, J.M., Tropeano, M., Sun, J., Canosa, T.: Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 29(2), 024005 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Nagamatsu, J., Nakagawa, N., Muranaka, T.: Superconductivity at 39 K in magnesium diboride. Nature. 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Wen, C., Yu, H., Hong, T., et al.: Coil shape optimization for superconducting wind turbine generator using response surface methodology and particle swarm optimization. IEEE Trans. Appl. Supercond. 24(3), 5202404 (2014)CrossRefGoogle Scholar
  18. 18.
    Keysan, O., Mueller, M.: A modular and cost-effective superconducting generator design for offshore wind turbines. Supercond. Sci. Technol. 28(3), 034004 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Lee, J.-K., Jung, D.-H., Lim, J., Lee, K.-D.: A study on the synchronous reluctance motor design for high torque by using RSM. IEEE Trans. Magn. 54(3), 8103005 (2018)Google Scholar
  20. 20.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cheng Wen
    • 1
  • Junyu Liu
    • 1
  • Zhiqiang Yu
    • 1
    Email author
  • Jin Liu
    • 1
  • Zhiyan Zhao
    • 1
  • Jing Wang
    • 1
  1. 1.Department of Electrical and Electronic EngineeringShijiazhuang Tiedao UniversityShijiazhuangChina

Personalised recommendations