Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3495–3501 | Cite as

Role of Ho Doping in Magnetization Mechanism of BiFeO3 Thin Films

  • Yuhan Wang
  • Yanjie Wang
  • Maobin Wei
  • Junkai Zhang
  • Yilin ZhangEmail author
Original Paper


BiFeO3 (BFO) as one of the considerable interesting multiferroic materials has been widely investigated for its fantastic science and potential application. Herein, effects of Ho doping on the structure, morphology, and magnetic properties of BFO thin films were systematically studied. X-ray diffraction (XRD) indicates a successful substitution of Ho at Bi site and a transition in crystal structure of Bi0.9Ho0.1FeO3 (BHFO) thin film. Raman scattering spectrum is further evidence of XRD analysis results. The Ho-doped BFO thin films possess uniform morphology. X-ray photoelectron spectroscopy (XPS) confirms that the substitution of Bi3+ ions with Ho3+ ions is beneficial. The remanent magnetization of BHFO thin films is about three times than that of the BFO thin films under a maximum magnetic field of 15,000 Oe. And we systematically discussed several possible reasons for the enhancement of magnetization.


BiFeO3 Multiferroic Substitution Crystal structure Magnetization 


Funding Information

This work is supported by the National Natural Science Foundation of China (Grant No. 51441006), the National Natural Science Foundation of China (Grant No. 51608226), the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province (Item No. JJKH20180769KJ).


  1. 1.
    Shirolkar, M.M., Li, J.N., Dong, X.L., Li, M., Wang, H.Q.: Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles. Phys Chem Chem Phys. 19, 26085 (2017)CrossRefGoogle Scholar
  2. 2.
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 44, 37 (2010)Google Scholar
  3. 3.
    Cheong, S.W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat Mater. 6, 13 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv Mater. 21, 2463 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y.L., Wang, Y.H., Qi, J., Tian, Y., Sun, M.J., Zhang, J.K., Hu, T.J., Wei, M.B., Liu, Y.Q., Yang, J.H.: Enhanced magnetic properties of BiFeO3 thin films by doping: analysis of structure and morphology. Nanomater. 8, 711 (2018)CrossRefGoogle Scholar
  6. 6.
    Damodaran, A.R., Liang, C.W., He, Q., Peng, C.Y., Chang, L., Chu, Y.H., Martin, L.W.: Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv Mater. 23, 3170 (2011)CrossRefGoogle Scholar
  7. 7.
    Azizi, Z.S., Tehranchi, M.M., Hamidi, S.M., Vakili, S.H., Poormahdian, S.: Thermoelastic-tunable magnetic response of BiFeO\r, 3\r thin film on colloidal photonic crystal substrate fabricated by pulsed laser deposition. Phys Status Solidi A. 214, 1 (2016)Google Scholar
  8. 8.
    Rana, D.S., Takahashi, K., Mavani, K.R., Kawayama, I., Murakami, H., Tonouchi, M., Yanagida, T., Tanaka, H., Kawai, T.: Implications of phase-segregation on structure, terahertz emission and magnetization of Bi(Fe1-xMnx)O3 (0≤x≤0.5) thin films. Phys Rev B. 75, 060405 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, S.Y., Jiang, G.J., Liu, G.S., Li, W.J., Xing, J.J.: Effects of Nd, Al doping on the structure and properties of BiFeO3. J Supercond Nov Magn. 21, 2463 (2009)Google Scholar
  10. 10.
    Zhang, Y.L., Qi, J., Wang, Y.H., Tian, Y., Zhang, J.K., Hu, T.J., Wei, M.B., Liu, Y.Q., Yang, J.H.: Tuning magnetic properties of BiFeO3 thin films by controlling Mn doping concentration. Ceram Int. 44, 6054 (2017)CrossRefGoogle Scholar
  11. 11.
    Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 429, 392 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, H.J., Liang, C.W., Liang, W.I., Chen, H.J., Yang, J.C., Peng, C.Y., Wang, G.F., Chu, F.N., Chen, Y.C., Lee, H.Y., Chang, L., Lin, S.J., Chu, Y.H.: Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction. Phys Rev B. 85(014104), (2012)Google Scholar
  13. 13.
    Liu, Y.Q., Wang, Y.H., Li, D., Zhang, Y.J., Zhang, J., Yang, J.H.: A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4-BaTiO3 multiferroic composites. J Mater Sci Mater Electron. 24, 1900 (2013)CrossRefGoogle Scholar
  14. 14.
    Titus, S., Srinivasu, V.V., Balakumar, S., Sakar, M., Das, J.: Electron spin resonance studies of undoped and dysprosium doped bismuth ferrite nanoparticles. J Supercond Nov Magn. 30, 819 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, L.C., Wang, Z.H., He, S.L., Li, X., Lin, P.T., Sun, J.R., Shen, B.G.: Enhanced magnetization and suppressed current leakage in BiFeO3 ceramics prepared by spark plasma sintering of sol-gel derived nanoparticles. Physica B. 407, 1196 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Bai, Z.L., Cheng, X.X., Chen, D.F., Zhang, D.W., Chen, L.Q., Scott, J.F., Hwang, C.S., Jiang, A.Q.: Hierarchical domain structure and extremely large wall current in epitaxial BiFeO3 thin films. Adv Funct Mater. 28, 1801725 (2018)CrossRefGoogle Scholar
  17. 17.
    Liu, Y.Q., Qi, J., Zhang, Y.L., Wang, Y.H., Feng, M., Zhang, J.K., Wei, M.B., Yang, J.H.: Surface agglomeration is beneficial for release of magnetic property via research of rare earth (RE) element-substitution. Appl Surf Sci. 427, 745 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Radheshyam, R., Sunil, K.M., Singh, N.K., Seema, S., KAndrei, L.: Preparation, structures, and multiferroic properties of single-phase BiRFeO3, R = La and Er ceramics. Curr Appl Phys. 11, 508 (2011)CrossRefGoogle Scholar
  19. 19.
    Rana, D.S., Takahashi, K., Mavani, K.R., Kawayama, I., Murakami, H., Tonouchi, M., Yanagida, T., Tanaka, H., Kawai, T.: Thickness dependence of the structure and magnetization of BiFeO3 thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) substrate. Phys Rev B. 75, 060405 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Zheng, Y.J., Tan, G.Q., Ren, H.J., Xia, A.: A kind of Bi1-xErxFeO3 films with potential excellent multiferroic performances. J Mater Sci. 52, 4903 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Betancourt-Cantera, L.G., Bolarín-Miró, A.M., Cortés-Escobedo, C.A., Hernández-Cruz, L.E., Sánchez-De Jesús, F.: Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater. 456, 381 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Khajonrit, J., Wongpratat, U., Kidkhunthod, P., Pinitsoontorn, S., Maensiri, S.: Effects of Co doping on magnetic and electrochemical properties of BiFeO3 nanoparticles. J Magn Magn Mater. 449, 423 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Yu, L., Deng, H.M., Zhou, W.L., Zhang, Q., Yang, P.X., Chu, J.H.: Effects of (Sm, Mn and Ni) co-doping on structural, optical and magnetic properties of BiFeO3 thin films fabricated by a sol-gel technique. Mater Lett. 170, 85 (2016)CrossRefGoogle Scholar
  24. 24.
    Godara, P., Agarwal, A., Ahlawat, N., Sanghi, S., Dahiya, R.: Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J Alloys Compd. 594, 175 (2014)CrossRefGoogle Scholar
  25. 25.
    Li, Z.J., Hou, Z.L., Song, W.L., Liu, X.D., Cao, W.Q., Shao, X.H., Cao, M.S.: Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption. Nanoscale. 8, 10415 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Surbhi, G., Monika, T., Vinay, G.: Raman spectroscopy of nanocrystalline Mn-doped BiFeO3 thin films. J Exp Nanosci. 8, 261 (2013)CrossRefGoogle Scholar
  27. 27.
    Dimitrij, S., Milena, R., Petronijević, N., Tasić, N., Branko, M., Biljana, S.: Dielectric and ferroelectric properties of ho-doped BiFeO3 nanopowders across the structural phase transition. Ceram Int. 43, 16531 (2017)CrossRefGoogle Scholar
  28. 28.
    Yuan, G.L., Or, S.W., Chan, H.L.W., Liu, Z.G.: Reduced ferroelectric coercivity in multiferroic Bi0.825 Nd0.175FeO3 thin film. J Appl Phys. 101, 024106 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Liu, Y.Q., Zhang, J., Wu, Y.H., Zhang, Y.J., Wei, M.B., Yang, J.H.: Enhancement of magnetization in Er doped BiFeO3 thin film. J Sol-Gel Sci Technol. 67(1), 1 (2013)CrossRefGoogle Scholar
  30. 30.
    Yoneda, Y., Kitanaka, Y., Noguchi, Y., Miyayama, M.: Electronic and local structures of Mn-doped BiFeO3 crystals. Phys Rev B. 86, 184122 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Raghavan, C.M., Kim, J.W., Kim, S.S.: Structural and electrical properties of (Bi0.9Dy0.1)(Fe0.975TM0.025)O3±δ (TM=Ni2+, Cr3+ and Ti4+) thin films. Ceram Int. 39, 3563 (2013)CrossRefGoogle Scholar
  32. 32.
    Karpinsky, D.V., Troyanchuk, I.O., Willinger, M., Khomchenko, V.A., Salak, A.N., Sikolenko, V., Silibin, M.V.: Intermediate structural state in Bi1-xPrxFeO3 ceramics at the rhombohedral-orthorhombic phase boundary. J Mater Sci. 52, 9355 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Qi, J., Zhang, Y.L., Wang, Y.H., Liu, Y.Q., Wei, M.B., Zhang, J.K., Feng, M., Yang, J.H.: Effect of Cr doping on the phase structure, surface appearance and magnetic property of BiFeO3 thin films prepared via sol-gel technology. J Mater Sci Mater Electron. 28, 17490 (2017)CrossRefGoogle Scholar
  34. 34.
    Jin, J., Zheng, C.H., Yang, H.M.: Natural diatomite modified as novel hydrogen storage material. Funct Mater Lett. 07, 1450027 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Yao, W., Nan, C.W.: Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl Phys Lett. 89, 052903 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Islam, M.R., Islam, M.S., Zubair, M.A., Usama, H.M., Azam, M.S., Sharif, A.: Correlation of charge defects and morphology with magnetic and electrical properties of Sr and Ta codoped BiFeO3. J Alloys Compd. 735, 2584 (2018)CrossRefGoogle Scholar
  37. 37.
    Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Singh, J., Agarwal, A., Sanghi, S., Bhasin, T., Yadav, M., Bhakar, U., Singh, O.: Effect of Ba and Ho co-doping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3. Curr Appl Phys. 19, 321 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuhan Wang
    • 1
  • Yanjie Wang
    • 2
  • Maobin Wei
    • 3
  • Junkai Zhang
    • 3
  • Yilin Zhang
    • 3
    Email author
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of PhysicsJilin UniversityChangchunChina
  3. 3.Jilin Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations