Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3165–3170 | Cite as

Flux Pinning Mechanism in BaSnO3-Added GdBa2Cu3O7-x Films with Different Thickness

  • J. Y. Oh
  • W. N. Kang
  • B. KangEmail author
Original Paper
  • 300 Downloads

Abstract

Types of flux pinning mechanism in pure and BaSnO3 (BSO)-added GdBa2Cu3O7-x (GdBCO) superconducting films have been determined by using the Dew-Hughes model. We have found that as the BSO content increases up to 4 wt%, dominant pinning mechanism of GdBCO films has changed from normal surface pinning due to intrinsic linear defects to normal point pinning by BSO addition. Careful analysis on the scaling of the flux pinning for the 4 wt% BSO-doped GdBCO films with various film thicknesses revealed that the pinning mechanism came from the hybrid pinning of two kinds of pinning types. In addition to the normal point pinning by BSO addition, another type of Δκ-pinning was observed to be prominent in the thinner films in low magnetic field region as normal point pinning was deteriorated. Through the EXAFS analysis, it was found that the Δκ-pinning is possibly originated from the oxygen deficiency in localized position. These results suggested that film thickness directly affects the flux pinning mechanism of the BSO-doped GdBCO films, and in the application point of view, an optimization of the film thickness may be crucial to operate normal point pinning induced by BSO addition.

Keywords

GdBCO BSO Flux pinning mechanism EXAFS 

Notes

Funding Information

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2018R1A2B6004784).

References

  1. 1.
    Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A.: High-Tc superconducting materials for electric power applications. Nature. 414, 368–377 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Barnes, P.N., Sumption, M.D., Rhoads, G.L.: Review of high power density superconducting generators: present state and prospects for incorporating YBCO windings. Cryogenics. 45, 670–686 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Foltyn, S.R., Civale, L., MacManus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.P.: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P.: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3. Nat. Mater. 3, 439–443 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Maiorov, B., Wang, H., Foltyn, S.R., Li, Y., DePaula, R., Stan, L., Arendt, P.N., Civale, L.: Influence of naturally grown nanoparticles at the buffer layer in the flux pinning in YBa2Cu3O7 coated conductors. Supercond. Sci. Technol. 19, 891–895 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Aytug, T., Paranthaman, M., Gapud, A.A., Kang, S., Christen, H.M., Leonard, K.J., Martin, P.M., Thompson, J.R., Christen, D.K., Meng, R., Rusakova, I., Chu, C.W., Johansen, T.H.: Enhancement of flux pinning and critical currents in YBa2Cu3O7-δ films by nanoscale iridium pretreatment of substrate surfaces. J. Appl. Phys. 98, 114309 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Huijbregtse, J. M., Klaassen, F. C., Szepielow, A., Rector, J. H., Dam, B., Griessen, R., Kooi, B. J., de Hosson, J. Th. M.: Vortex pinning by natural defects in thin films of YBa2Cu3O7- δ. Supercond. Sci. Technol. 15, 395–404 (2002)Google Scholar
  9. 9.
    Matsushita, T.: Flux pinning in superconducting 123 materials. Supercond. Sci. Technol. 13, 730–737 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Matsumoto, K., Mele, P., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Flux pinning characteristics of artificial pinning centers with different dimension. IEEE Trans. Appl. Supercond. 19, 3248–3253 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Matsumoto, K., Mele, P.: Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Goyal, A., Kang, S., Leonard, K.J., Martin, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, J.R.: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7- δ films. Supercond. Sci. Technol. 18, 1533–1538 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Mele, P., Matsumoto, K., Horide, T., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-x thin films. Supercond. Sci. Technol. 21, 032002 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Matsushita, T., Nagamizu, H., Tanabe, K., Kiuchi, M., Otabe, E.S., Tobita, H., Yoshizumi, M., Izumi, T., Shiohara, Y., Yokoe, D.: Improvement of flux pinning performance at high magnetic fields in GdBa2Cu3Oy coated conductors with BHO nano-rods through enhancement of Bc2. Supercond. Sci. Technol. 25, 125003 (2012)CrossRefGoogle Scholar
  15. 15.
    Tobita, H., Notoh, K., Higashikawa, K., Inoue, M., Kiss, T., Kato, T., Hirayama, T., Yoshizumi, M., Izumi, T., Shiohara, Y.: Fabrication of BaHfO3 doped Gd1Ba2Cu3O7- δ coated conductors with the high I c of 85A/cm-w under 3 T at liquid nitrogen temperature 77 K. Supercond. Sci. Technol. 25, 062002 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Mele, P., Matsumoto, K., Ichinose, A., Mukaida, M., Yoshida, Y., Horii, S., Kita, R.: Systematic study of the BaSnO3 insertion effect on the properties of YBa2Cu3O7-x films prepared by pulsed laser ablation. Supercond. Sci. Technol. 21, 125017 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Varanasi, C.V., Burke, J., Wang, H., Lee, J.H., Barnes, P.N.: Thick YBa2Cu3O7-x + BaSnO3 films with enhanced critical current density at high magnetic fields. Appl. Phys. Lett. 93, 092501 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Tran, D.H., Putri, W.B.K., Wie, C.H., Kang, B., Lee, N.H., Kang, W.N., Lee, J.Y., Seong, W.K.: Thickness dependence of critical current density in GdBa2Cu3O7- δ thin films with BaSnO3 addition. J. Appl. Phys. 111, 07D714 (2012)CrossRefGoogle Scholar
  19. 19.
    Tran, D.H., Putri, W.B.K., Kang, B., Lee, N.H., Kang, W.N.: A close correlation between nanostructure formation and the thickness dependence of the critical current density in pure and BaSnO3-added GdBa2Cu3O7- δ films. J. Appl. Phys. 115, 163901 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Dew-Hughes, D.: Flux pinning mechanism in type II superconductors. Philos. Mag. 30, 293 (1974)ADSCrossRefGoogle Scholar
  21. 21.
    Mele, P., Crisan, A., Adam, M.I.: Pinning-engineered YBa2Cu3Ox thin films. In: Crisan, A. (ed.) Vortices and nanostructured superconductors, pp. 15–63. Springer, Cham (2017)CrossRefGoogle Scholar
  22. 22.
    Varanasi, C.V., Barnes, P.N., Burke, J.: Enhanced flux pinning force and uniquely shaped flux pinning force plots observed in YBa2Cu3O7-x films with BaSnO3 nanoparticles. Supercond. Sci. Technol. 20, 1071–1075 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Kang, B., Tran, D.H., Kang, W.N.: Scaling of pinning forces in BaSnO3-added GdBa2Cu3O7-x superconducting thin films. Thin Solid Films. 624, 16–20 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, X.L., Li, A.H., Yu, S., Ooi, S., Hirata, K., Lin, C.T., Collings, E.W., Sumption, M.D., Bhatia, M., Ding, S.Y., Dou, S.X.: Thermally assisted flux flow and individual vortex pinning in Bi2Sr2Ca2Cu3O10 single crystals grown by the traveling solvent floating zone technique. J. Appl. Phys. 97, 10B114 (2005)CrossRefGoogle Scholar
  25. 25.
    Ravel, B.: Atoms: crystallography for the X-ray absorption spectroscopist. J. Synchrotron Radiat. 8, 314–316 (2001)CrossRefGoogle Scholar
  26. 26.
    Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005)CrossRefGoogle Scholar
  27. 27.
    Dam, B., Huijbregtse, J.M., Lassen, F.C., Van der Geest, R.C.F., Doornbos, G., Rector, J.H., Testa, A.M., Freisem, S., Matrinez, J.C., Stäuble-Pümpin, B., Griessen, R.: Origin of high critical currents in YBa2Cu3O7- δ superconducting thin films. Nature. 399, 439–442 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Nelson, D.R., Vinokur, V.: Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B. 48, 13060 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Koblischka, M.R.: Pinning forces and scaling in high-T c superconductors. Physica C. 282-287, 2193–2194 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Koblischka, M.R., van Dalen, A.J.J., Higuchi, T., Yoo, S.I., Murakami, M.: Analysis of pinning in NdBa2Cu3O7- δ superconductors. Phys. Rev. B. 58, 2863–2867 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., Kajimura, K.: Scaling of the flux pinning force in epitaxial Bi2Sr2Ca2Cu3Ox thin films. Phys. Rev. Lett. 70, 3331–3334 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Prins, R., Koningsberger, D.C. (eds.): X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS. XANES. Wiley, New York (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsChungbuk National UniversityCheongjuRepublic of Korea
  2. 2.Department of PhysicsSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations