Magnetic and Magnetotransport Characteristics of Cr-Substituted Ni55Mn34Sn11 Thin Films Grown by Magnetron Sputtering

  • Barsha Borgohain
  • P. K. Siwach
  • Nidhi SinghEmail author
  • K. V. R. Rao
  • H. K. SinghEmail author
Original Paper


Highly oriented Cr-substituted Ni55Mn34Sn11 Heusler thin films having thickness ~ 400 nm were deposited by Ultrahigh vacuum dc magnetron sputtering on MgO (100) substrates. At room temperature, the films exhibit a mixture of dominant L21 cubic austenite phase, as revealed by the intense (002) and (004) peaks, along with small fraction of the orthorhombic–martensitic phase. Surface morphology of the thin films showed distribution of Cr-rich and Cr-deficit regions together with patterned and aligned magnetic domains, thus bringing out the inherent room temperature ferromagnetism of the film. At temperatures above the Curie temperature, TC ~ 321 K, the magnetic behaviour of the films is seen to follow the Curie law rather than the Curie–Weiss law. Ferromagnetic to antiferromagnetic transition appears at TN ~ 247 K, which gives rise to exchange bias at low temperatures due to the coexistence of the two magnetic orders. This phase coexistence also leads to the formation of a spin glass state deep into the martensitic region. The film exhibits metal-like nature at high temperature and semiconductor-like behaviour with the lowering of temperature. A reentrant metallic state is observed at T ≤ 38 K during cooling that persists up to ≤ 62 K in warming cycle. The hysteresis in the ρT curve spread over a very wide temperature range confirms the magnetic phase coexistence in the martensitic state in the present thin films. The magnetoresistance (MR) first increases (2.4% at 300 K and H = 50 kOe) with temperature and maximizes to around ~ 3.25% at T = 150 K and then starts decreasing. Its value in the glassy state is very small. This shows that a magnetic liquid like state is more conducive to larger MR.


Sputtering Heusler alloys Thin films Austenite–martensite transformation 



One of the authors (BB) would like to thank DST-INSPIRE for providing the INSPIRE fellowship. The authors would like to thank Dr. K. K. Maurya for the HRXRD and Dr. Kedar Singh (JNU) for R-T measurements. The authors are also thankful to Director, USIC-University of Rajasthan, Jaipur for the use of the SQUID magnetometer facility created under the UGC-UPE program ‘Focused Area’ for magnetization measurement. The authors would like to thank Mr. Sandeep Singh for the MFM characterizations.

Funding information

Major equipment funding has been provided by the Council of Scientific and Industrial Research (CSIR).


  1. 1.
    Webster, P.J.: Heusler alloys. Contemp. Phys. 10, 559 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    Nanda, B.R.K., Dasgupta, I.: J. Phys. Condens. Matter. 15, 7307 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Galanakis, I., Mavropoulos, P., Dederichs, P.H.: J. Phys. D. Appl. Phys. B. 765, (2006)Google Scholar
  4. 4.
    Galanakis, I., Mavropoulos, P.: J. Phys. Condens. Matter. 19, 315213 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Planes, A., Mañosa, L., Acet, M.: J. Phys. Condens. Matter. 21, 233201 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Felser, C., Wollmann, L., Chadov, S., Fecher, G.H., Parkin, S.S.P.: APL Mater. 3, 41518 (2015)CrossRefGoogle Scholar
  7. 7.
    Bainsla, L., Suresh, K.G.: Citation Appl. Phys. Rev. 3, 031101 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., Oikawa, K.: Appl. Phys. Lett. 85, 4358 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Graf, T., Felser, C., Parkin, S.S.P.: Prog. Solid State Chem. 39, 1 (2011)CrossRefGoogle Scholar
  10. 10.
    Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Prida, V.M., Baldomir, D., Serantes, D., Varga, R., González, J.: Appl. Phys. Lett. 92, 132507 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Aksoy, S., Acet, M., Deen, P.P., Mañosa, L., Planes, A.: Phys. Rev. B. 79, 212401 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Phys. Rev. B. 79, 92410 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Khan, M., Jung, J., Stoyko, S.S., Mar, A., Quetz, A., Samanta, T., Dubenko, I., Ali, N., Stadler, S., Chow, K.H.: Appl. Phys. Lett. 100, 172403 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Tan, C.L., Huang, Y.W., Tian, X.H., Jiang, J.X., Cai, W.: Appl. Phys. Lett. 100, 132402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Zayak, A.T., Adeagbo, W.A., Entel, P., Rabe, K.M.: Appl. Phys. Lett. 88, 2004 (2006)CrossRefGoogle Scholar
  16. 16.
    Xuan, H.C., Cao, Q.Q., Zhang, C.L., Ma, S.C., Chen, S.Y., Wang, D.H., Du Appl, Y.W.: Phys. Lett. 96, 202502 (2010)Google Scholar
  17. 17.
    Santos, J.D., Sanchez, T., Alvarez, P., Sanchez, M.L., Sánchez Llamazares, J.L., Hernando, B., Escoda, L., Suñol, J.J., Varga, R.: J. Appl. Phys. 103, 07B326 (2008)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Zhang, L., Zheng, Q., Zheng, X., Li, M., Du, J., Yan, A.: Sci. Rep. 5, 11010 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Singh, N., Borgohain, B., Srivastava, A.K., Dhar, A., Singh, H.K.: Appl. Phys. A Mater. Sci. Process. 122, 237 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Auge, A., Teichert, N., Meinert, M., Reiss, G., Hütten, A., Yüzüak, E., Dincer, I., Elerman, Y., Ennen, I., Schattschneider, P.: Phys. Rev. B. 85, 214118 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Dunand, D.C., Müllner, P.: Adv. Mater. 23, 216 (2011)CrossRefGoogle Scholar
  22. 22.
    Malygin, G.A.: Tech. Phys. 54, 1782 (2009)CrossRefGoogle Scholar
  23. 23.
    Roytburd, A.L., Kim, T.S., Su, Q., Slutsker, J., Wuttig, M.: Acta Mater. 46, 5095 (1998)CrossRefGoogle Scholar
  24. 24.
    Vishnoi, R., Singhal, R., Kaur, D.: J. Nanopart. Res. 13, 3975 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Dubowik, J., Załȩski, K., Gościańska, I., Głowiński, H., Ehresmann, a.: Appl. Phys. Lett. 100, 162403 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Behler, A., Teichert, N., Dutta, B., Waske, A., Hickel, T., Auge, A., Hütten, A., Eckert, J.: AIP Adv. 3, 122112 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Pandey, S., Quetz, A., Aryal, A., Dubenko, I., Mazumdar, D., Stadler, S., Ali, N.: Magnetochemistry. 3, 3 (2017)CrossRefGoogle Scholar
  28. 28.
    Pandey, S., Us Saleheen, A., Quetz, A., Chen, J.-H., Aryal, A., Dubenko, I., Stadler, S., Ali, N.: AIP Adv. 8, 56408 (2018)CrossRefGoogle Scholar
  29. 29.
    Jing, C., Li, Z., Zhang, H.L., Chen, J.P., Qiao, Y.F., Cao, S.X., Zhang, J.C.: Eur. Phys. J. B. 67, 193 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: Mater. Sci. Eng. B. 157, 40 (2009)CrossRefGoogle Scholar
  31. 31.
    Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., Frontera, C.: J. Appl. Phys. 113, 53506 (2013)CrossRefGoogle Scholar
  32. 32.
    Fukushima, K., Sano, K., Kanomata, T., Nishihara, H., Furutani, Y., Shishido, T., Ito, W., Umetsu, R.Y., Kainuma, R., Oikawa, K., Ishida, K.: Scr. Mater. 61, 813 (2009)CrossRefGoogle Scholar
  33. 33.
    Machavarapu, R., Jakob, G.: Appl. Phys. Lett. 102, 232406 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Vishnoi, R., Kaur, D.: J. Alloys Compd. 509, 2833 (2011)CrossRefGoogle Scholar
  35. 35.
    Modak, R., Raja, M.M., Srinivasan, A.: J. Magn. Magn. Mater. 448, 146 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Golub, V.O., Lvov, V.A., Aseguinolaza, I., Salyuk, O., Popadiuk, D., Kharlan, Y., Kakazei, G.N., Araujo, J.P., Barandiaran, J.M., Chernenko, V.A.: Phys. Rev. B. 95(24422), (2017)Google Scholar
  37. 37.
    Krenke, T., Acet, M., Wassermann, E., Moya, X., Mañosa, L., Planes, A.: Phys. Rev. B. 72, 14412 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Tao, Q., Han, Z.D., Wang, J.J., Qian, B., Zhang, P., Jiang, X.F., Wang, D.H., Du, Y.W.: AIP Adv. 2, 042181 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Aydogdu, Y., et al.: J. Alloys Compd. 683, 339 (2016)CrossRefGoogle Scholar
  40. 40.
    Sokolovskiy, V.V., Buchelnikov, V.D., Zagrebin, M.A., Entel, P., Sahoo, S., Ogura, M.: Phys. Rev. B. 86, 134418 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Kundu, A., Ghosh, S.: J. Phys.: Condens. Matter. 30(015401), (2018)Google Scholar
  42. 42.
    Czaja, P., Chulist, R., Zywczak, A., Hawelek, L., Przewoznik, J.: Magnetochemistry. 3, 24 (2017)CrossRefGoogle Scholar
  43. 43.
    Borgohain, B., Siwach, P.K., Singh, N., Singh, H.K.: J. Magn. Magn. Mater. 454, 13 (2018)CrossRefGoogle Scholar
  44. 44.
    Getzlaff, M.: Fundamentals of Magnetism. Springer-Verlag Berlin, Heidelberg (2008)Google Scholar
  45. 45.
    Nayak, A.K., Shekhar, C., Winterlik, J., Gupta, A., Felser, C.: Appl. Phys. Lett. 100, 152404 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Sharma, J., Suresh, K.G.: Appl. Phys. Lett. 106, 072405 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Pal, D., Ghosh, K., Mandal, K.: J. Mag. Magnet. Mater. 360, 183 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Du, Y., Xu, G.Z., Zhang, X.M., Liu, Z.Y., Yu, S.Y., Liu, E.K., Wang, W.H., Wu, G.H.: Europhys. Lett. 103, 37011 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Sato, T., Kokado, S., Kosaka, S., Ishikawa, T., Ogawa, T., Tsunoda, M.: Appl. Phys. Lett. 113, 112407 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  2. 2.CSIR-National Physical LaboratoryNew DelhiIndia
  3. 3.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations