Advertisement

Reentrant Phenomena in an Antiferromagnetic Ising Nanoparticle and a Ladder-Type Ising System under an Applied Transverse Field

  • T. KaneyoshiEmail author
Original Paper
  • 22 Downloads

Abstract

The phase diagrams and magnetization curves of antiferromagnetic nanoparticle and ladder-type system are investigated by using the effective-field theory with correlations. They have exhibited some characteristic features, such as the reentrant phenomena, when a finite transverse field h is applied and even when h = 0.0.

Keywords

Phase diagrams Magnetizations Reentrant phenomena Nanoparticle Ladder-type system 

Notes

References

  1. 1.
    Yan, S., Malavolti, L., Burgess, J.A.J., Droghetti, A., Rubio, A., Loth, S.: Sci. Adv. 3, e1603137 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Pfeuty, P.: Ann. Phys. 57, 79 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, W.J., Xin, Z.H., Chen, S.L., Zhang, C.Y.: Chin. Phys. B. 22, 0275011 (2013)Google Scholar
  4. 4.
    Mhirech, A., Aouini, S., Alaoui-Ismail, A., Bahmad: Superlattice. Microst. 117, 382 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Mhirech, A., Aouini, S., Alaoui-Ismail, A., Bahmad, L.: J. Supercond. Nov. Magn. 30, 3189 (2017)CrossRefGoogle Scholar
  6. 6.
    Kaneyoshi, T.: J. Phys. Chem. Solids. 119, 202 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Kaneyoshi, T.: J. Supercond. Nov. Magn. 31, 3331 (2018)CrossRefGoogle Scholar
  8. 8.
    Kaneyoshi, T.: Nanomaterials. 7, 256 (2017)CrossRefGoogle Scholar
  9. 9.
    Yuksel, Y.: Eur. Phys. J. B. 91, 243 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Kaneyoshi, T.: J. Supercond. Nov. Magn. (2018)  https://doi.org/10.1007/s10948-018-4709-5
  11. 11.
    Kaneyoshi, T.: Inter. J. Modern Phys. B. 23, 1850255 (2018)CrossRefGoogle Scholar
  12. 12.
    Kaneyoshi, T.: J. Phys. Chem. Solids. (2018)  https://doi.org/10.1016/jpcs.2018.11.003
  13. 13.
    Sa Barreto, F.C., Fittipaldi, I.P., Zeks, B.: Ferroelectrics. 39, 1103 (1981)CrossRefGoogle Scholar
  14. 14.
    Callen, H.B.: Phys. Lett. 4, 161 (1965)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Honmura, R., Kaneyoshi, T.: J. Phys. C. 12, 3979 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    Kaneyoshi, T.: Acta Phys. Pol. A. 83, 703 (1993)CrossRefGoogle Scholar
  17. 17.
    Kaneyoshi, T., Jascur, M., Fittipaldi, I.P.: Phys. Rev. B. 48, 250 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Zernike, F.: Physica. 7, 565 (1940)ADSCrossRefGoogle Scholar
  19. 19.
    Magoussi, H., Zaim, A., Kerouad, M.: Superlattice. Microst. 89, 188 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, Q., Wei, G., Xin, Z., Liang, Y.: J. Magn. Magn. Mater. 280, 14 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Yuksel, Y., Akinci, U.: J. Phys. Chem. Solids. 112, 143 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Kaneyoshi, T.: Phase Transit. 87(603), 27 (2014)Google Scholar
  23. 23.
    Kaneyoshi, T.: Phase Transit. 88, 121 (2015)CrossRefGoogle Scholar
  24. 24.
    Kaneyoshi, T.: Physica B. 472, 11 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Kaneyoshi, T.: Phys. E. 74, 531 (2015)CrossRefGoogle Scholar
  26. 26.
    Kaneyoshi, T.: J. Phys. Chem. Solids. 81, 66 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Kaneyoshi, T.: J. Supercond. Nov. Magn. 30, 157 (2017)CrossRefGoogle Scholar
  28. 28.
    Kaneyoshi, T.: J. Supercond. Nov. Magn. 30, 1867 (2017)CrossRefGoogle Scholar
  29. 29.
    Lu, Z.X.: Phase Transit. 89, 273 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations