Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2973–2979 | Cite as

Magnetic Properties of MFeCrO4 (M = Co/Ni) Prepared by Solution Combustion Method

  • Nygil Thomas
  • V. D. SudheeshEmail author
  • Harish Kumar Choudhary
  • Balaram Sahoo
  • Swapna S. Nair
  • N. Lakshmi
  • Varkey Sebastian
Original Paper

Abstract

Single phase MFeCrO4 (M = Co/Ni) nanosized samples are prepared by solution combustion method using glycine as fuel. Lattice parameter obtained after Rietveld refinement of the powder x-ray diffraction pattern of CoCrFeO4 and NiCrFeO4 samples are 8.374 and 8.325 Å and corresponding crystallite sizes are 40 and 27 nm, respectively. FTIR spectra of both samples show tetrahedral and octahedral metal oxygen bond stretching peaks at 596 and 488 cm−1, indicating spinel phase formation. DC magnetisation study indicates that both samples are ferrimagnetic at room temperature, with CoCrFeO4 having a higher value of saturation magnetisation. Mössbauer spectra indicate the presence of magnetic relaxation in the samples. Also, the strength of interaction with nearest neighbour Fe3+ cations is higher in NiCrFeO4.

Keywords

Spinel oxides Combustion synthesis Magnetic materials Mössbauer spectroscopy 

Notes

Funding Information

This work has been supported by UGC-Innovative and DST-FIST programmes of Nirmalagiri College, Nirmalagiri.N. Thomas acknowledges the financial support given by UGC Minor project, Department of Chemistry, Nirmalagiri College.

References

  1. 1.
    Van Groenou, A.B., Bongers, P.F., Stuyts, A.L.: Magnetism , microstrueture and crystal chemistry of spinel ferrites. Mater. Sci. Eng. 3, 317–392 (1968)CrossRefGoogle Scholar
  2. 2.
    Sickafus, K.E., Wills, J.M., Grimes, N.W.: Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)CrossRefGoogle Scholar
  3. 3.
    Thomas, N., Jithin, P.V., Sudheesh, V.D., Sebastian, V.: Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram. Int. 43, 7305–7310 (2017)CrossRefGoogle Scholar
  4. 4.
    Anupama, M.K., Srinatha, N., Matteppanavar, S., et al.: Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018)CrossRefGoogle Scholar
  5. 5.
    Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Int. 42, 10565–10571 (2016)CrossRefGoogle Scholar
  6. 6.
    Mameli, V., Musinu, A., Ardu, A., et al.: Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale. 8, 10124–10137 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Khalaf, K.A.M., Al Rawas, A.D., Gismelssed, A.M., et al.: Influence of Cr substitution on Debye-Waller factor and related structural parameters of ZnFe2-xCrxO4 spinels. J. Alloys Compd. 701, 474–486 (2017)CrossRefGoogle Scholar
  8. 8.
    Köseoğlu, Y.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)CrossRefGoogle Scholar
  9. 9.
    Sharma, S., Choudhary, N., Verma, M.K., et al.: Chromium incorporated nanocrystalline cobalt ferrite synthesized by combustion method: effect of fuel and temperature. Ceram. Int. 43, 13401–13410 (2017)CrossRefGoogle Scholar
  10. 10.
    Lyubutin, I.S., Lin, C., Starchikov, S.S., et al.: Structural, magnetic, and electronic properties of mixed spinel NiFe2–xCrxO4 nanoparticles synthesized by chemical combustion. Inorg. Chem. 56, 12469–12475 (2017)CrossRefGoogle Scholar
  11. 11.
    Azam, M., Adeela, N., Khan, U., et al.: Structural and magnetic investigations of Cr substituted NiFe2O4 nanostructures. J. Alloys Compd. 698, 228–233 (2017)CrossRefGoogle Scholar
  12. 12.
    Vader, V.T., Achary, S.N., Meena, S.S.: A facile gel-combustion route for fine particle synthesis of spinel ferrichromite: X-ray and Mössbauer study on effect of mg and Ni content. Mater. Res. Bull. 50, 172–177 (2014)CrossRefGoogle Scholar
  13. 13.
    Sijo, A.K.: Influence of fuel-nitrate ratio on the structural and magnetic properties of Fe and Cr based spinels prepared by solution self combustion method. J. Magn. Magn. Mater. 441, 672–677 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Sijo, A.K., Dutta, D.P., Roy, M., Sudheesh, V.D.: Magnetic and dielectric properties of NiCrFeO4 prepared by solution self combustion method. Mater. Res. Bull. 94, 154–159 (2017)CrossRefGoogle Scholar
  15. 15.
    Navrotsky, A., Kleppa, O.: The thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29, 2701–2714 (1967)CrossRefGoogle Scholar
  16. 16.
    Han, M., Vestal, C.R., Zhang, Z.J.: Quantum couplings and magnetic properties of CoCrxFe2-xO4 (0<x<1 ) spinel ferrite nanoparticles synthesized with reverse micelle method. J. Phys. Chem. B. 108, 583–587 (2004)CrossRefGoogle Scholar
  17. 17.
    Varma, A., Mukasyan, A.S., Rogachev, A.S., Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)CrossRefGoogle Scholar
  18. 18.
    Aruna, S.T., Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Hwang, C.-C., Wu, T.-Y., Wan, J., Tsai, J.-S.: Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Mater. Sci. Eng. B. 111, 49–56 (2004)CrossRefGoogle Scholar
  20. 20.
    Nikmanesh, H., Eshraghi, M., Karimi, S.: Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: effect of calcination temperature and chromium substitution. J. Magn. Magn. Mater. 471, 294 (2019)ADSCrossRefGoogle Scholar
  21. 21.
    Singhal, S., Bhukal, S., Singh, J., et al.: Optical, X-ray diffraction, and magnetic properties of the cobalt-substituted nickel chromium ferrites (CrCoxNi1-xFeO4, x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) synthesized using sol-gel autocombustion method. J Nanotechnol. (2011).  https://doi.org/10.1155/2011/930243 CrossRefGoogle Scholar
  22. 22.
    Toksha, B.G., Shirsath, S.E., Mane, M.L., et al.: Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCrxFe2-xO4 (0≤x≤1.0). J. Phys. Chem. C. 115, 20905–20912 (2011)CrossRefGoogle Scholar
  23. 23.
    Patange, S.M., Shirsath, S.E., Toksha, B.G., et al.: Electrical and magnetic properties of Cr3+ substituted nanocrystalline nickel ferrite. J. Appl. Phys. 106, 023914 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Sudheesh, V.D., Thomas, N., Roona, N., et al.: Synthesis, characterization and influence of fuel to oxidizer ratio on the properties of spinel ferrite (MFe2O4, M = Co and Ni) prepared by solution combustion method. Ceram. Int. 43, 15002–15009 (2017)CrossRefGoogle Scholar
  25. 25.
    Sudheesh, V.D., Thomas, N., Roona, N., et al.: Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J. Alloys Compd. 742, 577–586 (2018)CrossRefGoogle Scholar
  26. 26.
    Jain, S.R., Adiga, K.C., Pai Verneker, V.R.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame. 40, 71–79 (1981)CrossRefGoogle Scholar
  27. 27.
    Lutterotti, L., Matthies, S., Wenk, H.-R., et al.: Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594–560 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Choudhary, H.K., Kumar, R., Anupama, A.V., Sahoo, B.: Effect of annealing temperature on the structural and magnetic properties of Ba-Pb-hexaferrite powders synthesized by sol-gel auto-combustion method. Ceram. Int. 44, 8877–8889 (2018)CrossRefGoogle Scholar
  29. 29.
    Cullity, B.D., Graham, C.D.: Introduction to magnetic materials, Second. Wiley, Hoboken (2009)Google Scholar
  30. 30.
    Coey, J.M.D.: Magnetism and magnetic materials. Cambridge University Press, New York (2009)Google Scholar
  31. 31.
    Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)ADSCrossRefGoogle Scholar
  32. 32.
    Chae, K.P., Lee, Y.B., Lee, J.G., Lee, S.H.: Crystallographic and magnetic properties of CoCrxFe2−xO4 ferrite powders. J. Magn. Magn. Mater. 220, 59–64 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Hashim, M.: Electrical resistivity and M € ossbauer studies of Cr substituted Co nano ferrites. J. Alloys Compd. 694, 366–374 (2016)Google Scholar
  34. 34.
    Winell, S., Amcoff, Ö., Ericsson, T.: Cation ordering in NiFe2-xCrxO4 -spinels studied by Mössbauer spectroscopy in external fields. Phys Status Solidi B. 245, 1635–1640 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nygil Thomas
    • 1
  • V. D. Sudheesh
    • 2
    • 3
    Email author
  • Harish Kumar Choudhary
    • 4
  • Balaram Sahoo
    • 4
  • Swapna S. Nair
    • 5
  • N. Lakshmi
    • 6
  • Varkey Sebastian
    • 2
  1. 1.Department of ChemistryNirmalagiri CollegeKannurIndia
  2. 2.Department of PhysicsNirmalagiri CollegeKannurIndia
  3. 3.Department of PhysicsNSS College NemmaraPalakkadIndia
  4. 4.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  5. 5.Department of PhysicsCentral University of KeralaKasaragodIndia
  6. 6.Department of PhysicsMohanlal Sukhadia UniversityUdaipurIndia

Personalised recommendations