Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2895–2902 | Cite as

Phase Diagram and Magnetocaloric Effect of Mn2Tb-Fe2Tb System

  • Xin Zhou
  • Lei MaEmail author
  • Lin Li
  • Peilin Dong
  • Yongbin Guo
  • Zhengfei Gu
Original Paper
  • 92 Downloads

Abstract

Mn2Tb-Fe2Tb phase diagram was drawn, and the crystal structure and magnetocaloric effect of (Mn1-xFex)2Tb (x ≤ 0.5) compounds at the Mn-rich side were systematically studied. X-ray diffraction demonstrates that all these Laves phase compounds crystallize in the cubic MgCu2-type structure. The Rietveld results of XRD shows the cell volume increases with Fe content. The influence of doping effect in (Mn1-xFex)2Tb (x ≤ 0.5) compounds on their magnetic and magnetocaloric properties for all solid solutions is presented. The Curie temperature (Tc) rises from 49 K (for x = 0.0) to 322 K (for x = 0.5), depending on Fe content significantly. Based on Landau’s theory, the magnetization behavior and magnetic transition were analyzed. The magnetocaloric effect (MCE) of (Mn1-xFex)2Tb compounds is also discussed using the Maxwell relation, and the maximum magnetic entropy change ( ΔSMMax) approaches to 10 J kg−1 K−1 at x = 0 under a field ranging from 0 to 5 T. The best relative cooling power (RCP) reaches 535.03 J/kg (x = 0.1).

Keywords

Magnetic materials Phase diagram Laves phase Magnetic properties Magnetocaloric effect 

Notes

Funding Information

This work is supported by the National Natural Science Foundation of China (51461012), GUET Excellent Graduate Thesis Program (16YJPYSS32), Innovation Project of GUET Graduate Education (2018YJCX84), the Guangxi Key Laboratory of Information Materials (171017-Z, 171022-Z), and the Guangxi Natural Science Foundation (2016GXNSFAA380030, 2016GXNSFGA380001).

References

  1. 1.
    Smith, A., Bahl, C.R.H., Bjørk, R., Engelbrecht, K., Nielsen, K.K., Pryds, N.: Adv. Energy Mater. 2, 1288–1318 (2012)CrossRefGoogle Scholar
  2. 2.
    Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479–1539 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Cooke, A.H.: Proc. Phys. Soc. 62, 269–278 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    Hamilton, A.C.S., Lampronti, G.I., Rowley, S.E., Dutton, S.E.: J. Phys. Condens. Matter. 26, 116001 (2014)CrossRefGoogle Scholar
  5. 5.
    Flicstein, J., Schieber, M.: J. Cryst. Growth. 18, 265–268 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    Phejar, M., Paul-Boncour, V., Bessais, L.: Intermetallics. 18, 2301–2307 (2010)CrossRefGoogle Scholar
  7. 7.
    Nouri, K., Jemmali, M., Walha, S., Zehani, K., Ben Salah, A., Bessais, L.: J. Alloy. Compd. 67, 2440–2448 (2016)Google Scholar
  8. 8.
    Boutahar, A., Lassri, H., Zehani, K., Bessais, L., Hlil, E.K.: J. Magn. Magn. Mater. 369, 92–95 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Dhahri, A., Jemmali, M., Taibi, K., Dhahri, E., Hlil, E.K.: J. Alloy. Compd. 618, 488–496 (2015)CrossRefGoogle Scholar
  10. 10.
    Bejar, M., Dhahri, R., Halouani, F.E., Dhahri, E.: J. Alloy. Compd. 414, 31–35 (2006)CrossRefGoogle Scholar
  11. 11.
    Triki, M., Dhahri, R., Bekri, M., Dhahri, E., Valente, M.A.: J. Alloy. Compd. 509, 9460–9465 (2011)CrossRefGoogle Scholar
  12. 12.
    Lemoine, P., Vernière, A., Malaman, B., Mazet, T.: J. Alloy. Compd. 680, 612–616 (2016)CrossRefGoogle Scholar
  13. 13.
    Zuo, W., Hu, F., Sun, J., Shen, B.G.: J. Alloy. Compd. 575, 162–167 (2013)CrossRefGoogle Scholar
  14. 14.
    Gerasimov, G., Mushnikov, N.V., Inishev, A.A., Terentev, P.B., Gaviko, V.S.: J. Alloys Compd. 680, 359–365 (2016)CrossRefGoogle Scholar
  15. 15.
    Balli, M., Fruchart, D., Gignoux, D.: J. Magn. Magn. Mater. 314, 16–20 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Chzhan, V.B., Tereshina, E.A., Mikhailova, A.B., Politova, G.A., Tereshina, I.S., Kozlov, V.I., C’wik, J., Nenkov, K., Alekseeva, O.A., Filimonov, A.V.: J. Magn. Magn. Mater. 432, 461–465 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Anikin, M., Tarasov, E., Kudrevatykh, N., Inishev, A., Semkin, M., Volegov, A., Zinin, A.: J. Magn. Magn. Mater. 418, 181–187 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Pecharsky, V.K., Gschneidner, K.A., Mudryk, Y., Paudyal, D.: J. Magn. Magn. Mater. 321, 3541–3547 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Chumak, A.V., Dhagat, P., Jander, A., Serga, A.A., Hillebrands, B.: Phys. Rev. B. 81, 140404 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science. 264, 413–415 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Wada, H., Tanabe, Y.: Appl. Phys. Lett. 79, 3302–3304 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Nature. 415, 150–152 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, D., Ma, L., Guo, Y.B., Zhou, X.: Mater. Res. Express. 4, 126106 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang, W., Levin, E.M., Gschneidner Jr., K.A.: J. Magn. Magn. Mater. 250, 170–178 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Zou, J.D., Paudyal, D., Liu, J., Mudryk, Y., Pecharsky, V.K., Gschneidner Jr., K.A.: J. Mater. Chem. C. 3, 2422–2430 (2015)CrossRefGoogle Scholar
  26. 26.
    Brown, P.J., Ouladdiaf, B., Ballou, R.: J. Phys. Condens. Matter. 4, 1103–1113 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    Oesterreicher, H.J.: Less Common Met. 46, 127–132 (1976)CrossRefGoogle Scholar
  28. 28.
    Kimbal, D.: Acta. Crystallogr. Sec. B. 30, 2791 (1974)CrossRefGoogle Scholar
  29. 29.
    Yang, S., Ren, X.B.: Phys. Rev. B. 77, 014407 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Banerjee, S.K.: Phys. Lett. 12, 16–17 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    Ćwik, J.: J. Supercond. Nov. Magn. 27(11), 2547–2553 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y.K., Yang, Y., Xu, X., Hou, L., Ren, Z.M., Li, X., Wilde, G.: J. Phys. D. Appl. Phys. 49, 145002 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Franco, V., Conde, A., Romeroenrique, J.M., Blázquez, J.S.: J. Phys. Condens. Matter. 20, 285207 (2008)CrossRefGoogle Scholar
  34. 34.
    Zhang, Y.K., Xu, X., Yang, Y., Hou, L., Ren, Z.M., Li, X.G.: J. Alloy. Compd. 667, 130–133 (2016)CrossRefGoogle Scholar
  35. 35.
    Li, L.W., Yi, Y.L., Su, K.P., Huo, D.X., Pöttgen, R.: J. Mater. Sci. 51, 5421–5426 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Li, L., Nishimura, K., Yamane, H.: Appl. Phys. Lett. 94, 1479 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xin Zhou
    • 1
  • Lei Ma
    • 1
    • 2
    Email author
  • Lin Li
    • 1
    • 2
  • Peilin Dong
    • 1
  • Yongbin Guo
    • 1
  • Zhengfei Gu
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations