Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2849–2856 | Cite as

A High-Order L-Band HTS Filter for Sensitive Detecting

  • L. T. Wang
  • Y. Xiong
  • Y. H. Xiao
  • J. Y. Liu
  • M. He
  • H. H. ChenEmail author
  • L. Ji
  • X. J. Zhao
  • F. B. Song
Original Paper


In this paper, a new high-temperature superconducting (HTS)-based microwave radiometer with an improved sensitivity is presented. The cryogenic receiver front end consists of an HTS filter and a cryogenic low noise amplifier (LNA). The cryogenic receiver front end shows an ultra-low noise figure and can suppress radio frequency interference (RFI) effectively. The proposed HTS filter works at a center frequency of 1.4135 GHz with a bandwidth of 25 MHz. The measured mid-band insertion loss, side band steepness, and out-of-band attenuation of the HTS filter are 0.14 dB, 35 dB/MHz, and 80 dB, respectively. The noise figure of the cryogenic LNA is about 0.27 dB at a temperature of 77 K. Compared with other total power radiometers, the proposed radiometer has a lower receiver noise temperature, which can improve the sensitivity with a short integration time of the satellite-based salinity meter. In addition, since the bandwidth of the salinity meter is fixed and the integration time of satellite-based equipment is limited, such a low receiver noise temperature can increase the flexibility of future satellite payload configuration program.


Microwave radiometer Cryogenic front end HTS filter Cryogenic LNA Sensitivity 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 61171028, Grant No. 61176119, Grant No. 61471208, Grant No. 61841108), the Natural Science Foundation of Tianjin (No. 15JCQNJC01300), and the Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology.


  1. 1.
    Font, J., Lagerloef, G.S.E., Levine, D.M.: The determination of surface salinity with the European SMOS space mission. IEEE Trans Geosci Remote Sens. 42, 2196–2205 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Levine, D.M., Lagerloef, G.S.E., Yueh, S.H.: Aquarius: an instrument to monitor sea surface salinity from space. IEEE Trans Geosci Remote Sens. 45, 2040–2050 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Yueh, S.H., Chaubell, J.: Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. IEEE Trans Geosci Remote Sens. 50, 1022–1032 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Crosson, W.L., Limaye, A.S., Laymon, C.A.: Parameter sensitivity of soil moisture retrievals from airborne L-band radiometer measurements in SMEX02. IEEE Trans Geosci Remote Sens. 43, 1517–1528 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Dong, J., Li, Q., Shi, R., Gui, L.: The placement of antenna elements in aperture synthesis microwave radiometers for optimum radiometric sensitivity. IEEE Trans Antennas Propag. 59, 4103–4114 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Eskandari, S., Hamedani, F.T.: Progress of millimeter wave radiometers sensitivity, designing a wideband low noise amplifier. Antenna Technology and Applied Electromagnetics, France, Toulousem. pp. 1–5 (2012)Google Scholar
  7. 7.
    Zhu, L., Liu, Y.Y., Huang, D.C.: The sensitivity improvement method of direct sampling microwave radiometer, pp. 1168–1171. Antennas Propagation and EM Theory, China, Guangzhou (2010)Google Scholar
  8. 8.
    Hersman, M.S., Poe, G.A.: Sensitivity of the total power radiometer with periodic absolute calibration. IEEE Trans Microwave Theory Tech. 29, 32–40 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    Pal, S., Stevens, C.J., Edwards, D.J.: Compact parallel coupled HTS micro-strip bandpass filters for wireless communications. IEEE Trans Microwave Theory Tech. 54, 768–775 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Niu, D.C., Huang, T., Lee, H.J., Chang, C.Y.: An X-band front-end module using HTS technique for a commercial dual mode radar. IEEE Trans. Appl. Supercond. 15, 1008–1011 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Kawaguchi, T., Shiokawa, N., Nakayama, K., Yamazaki, K.: High-sensitivity HTS receiver module with hermetic thermal insulation waveguides. Microwave Conference. pp. 955–958 (2003)Google Scholar
  12. 12.
    Sun, L., He, Y.: Research progress of high temperature superconducting filters in China. Trans Appl Superconductivity. 24, 1–8 (2014)Google Scholar
  13. 13.
    Wu, Y., Sun, L., Li, C., et al.: Developments of microwave HTS-based devices and subsystems for applications in civilian satellites. IEEE, International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves. pp. 46–51 (2013)Google Scholar
  14. 14.
    Stephen, J.S., Graeme, L.J.: Wide-band orthomode transducers. IEEE Trans Microwave Theory Tech. 39, 294–300 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Chung, Y. S., Dunning, A., Bowen, M.A.: Ultra sharp roll-off bandpass filter design for near pass-band RFI mitigation. Asia Pacific Microwave Conference. pp. 491–493 (2013)Google Scholar
  16. 16.
    Chen, Y., Li, Z.K., Wu, K.L., et al.: Microwave and millimeter-wave cryogenic wideband LNA design and characterization. Asia-Pacific Microwave Conference. 2 (2016)Google Scholar
  17. 17.
    Mcculloch, M.A., Grahn J., Melhuish S.J., et al..: Dependence of noise temperature on physical temperature for cryogenic low-noise amplifiers. J. Astron. Telesc. Instrum. Syst. 3(1) (2017). Scholar
  18. 18.
    Liu, H.F., Jin, C.J., Cao, Y., et al.: High linearity, low noise, L-band cryogenic amplifier for radio astronomical receivers. Microw. Opt. Technol. Lett. 59, 500–505 (2017)CrossRefGoogle Scholar
  19. 19.
    Pozar, D.M.: Microwave Engineering, 4th ed. Publishing House of Wiley, Hoboken (2005)Google Scholar
  20. 20.
    He, Y.S., Li, C.G.: Superconducting receiver front-end and its application in meteorological radar. In: Kouemou, G. (ed.) Radar Technology. In Tech, Vukovar (2010)Google Scholar
  21. 21.
    Satoh, K., Narahashi, S., Nojima, T., et al.: The 2 GHz high temperature superconducting receiver equipment for mobile communications. Physica C: Superconductivity and its Applications. 357, 1495–1502 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, Z., Xie, Y., Lu, H., et al.: Calibration and impact analysis of 23.8 GHz digital-correlation full-polarimetric microwave radiometer. Remote Sensing Technology and Application. 30, 744–756 (2015)Google Scholar
  23. 23.
    Xie, W., Wang, P., He, M., et al.: Double-sided Tl2Ba2Ca2Cu3O10 thin films based high temperature superconducting filter operating above 100 K. Appl. Phys. Lett. 105, 1–3 (2014)Google Scholar
  24. 24.
    Skou, N., Vine, D.L.: Microwave Radiometer Systems, 2nd edn. Artech House Remote Sensing Library, Boston (2006)Google Scholar
  25. 25.
    Wei, E.B., Liu, S.B., Wang, Z.Z., Tong, X.L., et al.: Emissivity measurements of foam-covered water surface at L-band for low water temperatures. Remote Sens. 6, 10913–10930 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Zribi, M., Parde, M., Boutin, J.: AROLS: a new airborne L-band radiometer for ocean surface and land observations. Sensors. 11, 719–742 (2011)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Heron, M.L., Prytz, A., et al.: Evaluation of a new airborne microwave remote sensing radiometer by measuring the salinity gradients across the shelf of the Great Barrier Reef Lagoon. IEEE Trans Geosci Remote Sens. 45, 3701–3709 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. T. Wang
    • 1
  • Y. Xiong
    • 1
    • 2
  • Y. H. Xiao
    • 1
  • J. Y. Liu
    • 3
  • M. He
    • 1
  • H. H. Chen
    • 1
    Email author
  • L. Ji
    • 1
  • X. J. Zhao
    • 1
  • F. B. Song
    • 2
  1. 1.College of Electronic Information and Optical EngineeringNankai UniversityTianjinChina
  2. 2.Southwest China Institute of Electronic TechnologyChengduChina
  3. 3.Key Laboratory of Microwave Remote Sensing, National Space Science CenterChinese Academy of SciencesBeijingChina

Personalised recommendations