Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3243–3249 | Cite as

Tuning the Ground State and Its Relationship to Zero-Field-Cooled Exchange Bias in NiMnSnAl Alloys

  • N. L. Lu
  • Y. Li
  • H. B. Wang
  • Z. D. HanEmail author
  • C. L. Zhang
  • Y. Fang
  • L. Zhang
  • B. QianEmail author
  • X. F. Jiang
Original Paper
  • 107 Downloads

Abstract

The crystal structure, phase transitions, and exchange bias (EB) in Al-doped Ni50Mn36Sn14-xAlx Heusler alloys were investigated. With the increase of Al content, the cell volume decreases gradually, and the martensitic transformation temperature shifts to a higher temperature. Due to the positive “chemical pressure” by Al substitution, the antiferromagnetic interaction strengthens, leading to the decrease of magnetization and the ground state evolution from “reentrant” spin glass to spin glass. Zero-field-cooled EB is triggered in samples exhibiting spin-glass ground state. These results suggest a viable way to design Ni-Mn-Z-based alloys showing zero-field-cooled EB by tuning the exchange interactions and ground state via lattice modulation.

Keywords

Heusler alloy Ground state Spin glass Exchange bias 

Notes

Funding Information

This work was supported by National Natural Science Foundation of China (51371004, 61604021, and U1832147), Natural Science Foundation of Jiangsu Educational Department (15KJA430001 and 16KJA150007).

References

  1. 1.
    Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102(5), 1413–1414 (1956)ADSCrossRefGoogle Scholar
  2. 2.
    Nogués, J., Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203–232 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Matsuzono, A., Terada, S., Ono, H., Furukawa, A., Sone, T., Sasaki, S., Kakihara, Y., Takeda, Y., Chiyokubo, N., Matsuki, H.: Study on requirements for shielded current perpendicular to the plane spin valve heads based on dynamic read tests. J. Appl. Phys. 91(10), 7267–7269 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Kaka, S., Russek, S.E.: Precessional switching of submicrometer spin valves. Appl. Phys. Lett. 80(16), 2958–2960 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, B.M., Liu, Y., Ren, P., Xia, B., Ruan, K.B., Yi, J.B., Ding, J., Li, X.G., Wang, L.: Large exchange Bias after zero-field cooling from an Unmagnetized state. Phys. Rev. Lett. 106(7), 077203–077206 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Nayak, A.K., Nicklas, M., Chadov, S., Shekhar, C., Skourski, Y., Winterlik, J., Felser, C.: Large zero-field cooled exchange-Bias in bulk Mn2PtGa. Phys. Rev. Lett. 110(12), 127204–127208 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Han, Z.D., Qian, B., Wang, D.H., Zhang, P., Jiang, X.F., Zhang, C.L., Du, Y.W.: Magnetic phase separation and exchange bias in off-stoichiometric Ni-Mn-Ga alloys. Appl. Phys. Lett. 103(17), 172403–172407 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, X., Li, M., Li, J., Yang, J., Ma, L., Zhen, C., Hou, D., Liu, E., Wang, W., Wu, G.: Design of anti-site disorder for tunable spontaneous exchange bias: Mn-Ni-Al alloys as a case. Appl. Phys. Lett. 113(21), 212402 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Çakır, A., Acet, M., Farle, M.: Exchange bias caused by field-induced spin reconfiguration in Ni-Mn-Sn. Phys. Rev. B. 93(9), 094411–094417 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Giri, S., Sahoo, R., Dasgupta, P., Poddar, A., Nath, T.: Giant spontaneous exchange bias effect in Sm1. 5Ca0. 5CoMnO6 perovskite. J. Phys. D. Appl. Phys. 49(16), 165002–165008 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Cui, S., Guo, S., Wang, R., Sun, Z., Xiao, H., Xu, L., Yang, C., Xia, Z.: Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. Sci. Rep. 6(25703), (2016)Google Scholar
  12. 12.
    Yu, J., Wang, L., Huang, K., Chen, Z., Guo, Y.: Large zero-field cooled exchange bias in Ba1+δMn8O16 nanoribbons. Appl. Surf. Sci. 357, 2343–2346 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, L.G., Zhu, C.M., Tian, Z.M., Luo, H., Bao, D.L.G.C., Yuan, S.L.: Negative magnetization and zero-field cooled exchange bias effect in Co0.8Cu0.2Cr2O4 ceramics. Appl. Phys. Lett. 107(15), 152406 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Murthy, J.K., Venimadhav, A.: Giant zero field cooled spontaneous exchange bias effect in phase separated La1.5Sr0.5CoMnO6. Appl. Phys. Lett. 103(25), 252410–252414 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Lin, S., Shao, D.F., Lin, J.C., Zu, L., Kan, X.C., Wang, B.S., Huang, Y.N., Song, W.H., Lu, W.J., Tong, P.: Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C. 3(22), 5683–5696 (2015)CrossRefGoogle Scholar
  16. 16.
    Lin, J.C., Tong, P., Cui, D.P., Yang, C., Lin, S., Lu, W.J., Wang, B.S., Zhao, B.C., Sun, Y.P.: Exchange bias induced after zero-field cooling in antiperovskite compounds Ga1-xNMn3+x. Phys. Status. Solidi. B. 252(3), 582–588 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Li, Y., Lu, N., Shi, S., Jin, Y., Han, Z., Lin, Y., Yu, H., Tu, R., Zhang, C., Fang, Y.: Suppression of reentrant spin glass and induced zero-field-cooled exchange bias by lattice contraction in NiMnSbAl alloys. J. Alloys Compd. 766, 791–795 (2018)CrossRefGoogle Scholar
  18. 18.
    Li, M., Shen, J., Wang, X., Ma, L., Li, G., Zhen, C., Hou, D., Wang, M.: Enhanced antiferromagnetic interaction-induced spontaneous exchange bias in Mn50Ni40Sn10-xTix Heusler alloys. Intermetallics. 96, 13–17 (2018)CrossRefGoogle Scholar
  19. 19.
    Jia, L., Shen, J., Li, M., Wang, X., Ma, L., Zhen, C., Hou, D., Liu, E., Wang, W., Wu, G.: Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system. Apl Mater. 5(12), 126105 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Tian, F., Cao, K., Zhang, Y., Zeng, Y., Zhang, R., Chang, T., Zhou, C., Xu, M., Song, X., Yang, S.: Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys. Sci. Rep. 6 (2016)Google Scholar
  21. 21.
    Liao, P., Jing, C., Wang, X.L., Yang, Y.J., Zheng, D., Li, Z., Kang, B.J., Deng, D.M., Cao, S.X., Zhang, J.C., Lu, B.: Strongly enhanced antiferromagnetism and giant spontaneous exchange bias in Ni50Mn36Co4Sn10 Heusler alloy. Appl. Phys. Lett. 104(9), 092410–092414 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Sun, J., Jing, C., Liu, C., Huang, Y., Sun, X., Zhang, Y., Ye, M., Deng, D.: Complicated magnetic phases and presence of exchange Bias in off-stoichiometric Mn50Ni25+xIn25−x Heusler alloys. J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4899-x CrossRefGoogle Scholar
  23. 23.
    Wang, B.M., Liu, Y., Xia, B., Ren, P., Wang, L.: Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. J. Appl. Phys. 111(4), 043912–043918 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Aksoy, S., Acet, M., Deen, P.P., Manosa, L., Planes, A.: Magnetic correlations in martensitic Ni-Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys. Rev. B. 79(21), 212401–212404 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Enkovaara, J., Heczko, O., Ayuela, A., Nieminen, R.M.: Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys. Rev. B. 67(21), 212405–212408 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Li, Z., Jing, C., Chen, J., Yuan, S., Cao, S., Zhang, J.: Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl. Phys. Lett. 91(11), 112505–112507 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Khan, M., Dubenko, I., Stadler, S., Ali, N.: Exchange bias behavior in Ni-Mn-Sb Heusler alloys. Appl. Phys. Lett. 91(7), 072510–072512 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Bai, V.S., Rajasekharan, T.: Evidence of a critical Mn-Mn distance for the onset of ferromagnetism in NiAs type compounds. J. Magn. Magn. Mater. 42(2), 198–200 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    Dong, S., Chen, J., Han, Z., Fang, Y., Zhang, L., Zhang, C., Qian, B., Jiang, X.: Intermartensitic transformation and enhanced exchange Bias in Pd (Pt)-doped Ni-Mn-Sn alloys. Sci. Rep. 6(25911), (2016)Google Scholar
  30. 30.
    Brown, P.J., Gandy, A.P., Ishida, K., Kainuma, R., Kanomata, T., Neumann, K.U., Oikawa, K., Ouladdiaf, B., Ziebeck, K.R.A.: The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J. Phys. Condens. Matter. 18(7), 2249–2259 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni−Mn−Sn alloys. Phys. Rev. B. 72(1), 014412–014410 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Chatterjee, S., Giri, S., De, S.K., Majumdar, S.: Reentrant-spin-glass state in Ni2Mn1.36Sn0.64 shape-memory alloy. Phys. Rev. B. 79(9), 092410–092413 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Ma, L., Wang, W.H., Lu, J.B., Li, J.Q., Zhen, C.M., Hou, D.L., Wu, G.H.: Coexistence of reentrant-spin-glass and ferromagnetic martensitic phases in the Mn2Ni1.6Sn0.4 Heusler alloy. Appl. Phys. Lett. 99(18), 182507–182509 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Aksoy, S., Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L.s., Planes, A.: Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91(24), 241916–241918 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Han, Z.D., Wang, D.H., Zhang, C.L., Xuan, H.C., Zhang, J.R., Gu, B.X., Du, Y.W.: Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni-Mn-Sn alloys. Mater. Sci. Eng. B. 157(1–3), 40–43 (2009)CrossRefGoogle Scholar
  36. 36.
    Ali, M., Adie, P., Marrows, C.H., Greig, D., Hickey, B.J., Stamps, R.L.: Exchange bias using a spin glass. Nat. Mater. 6(1), 70–75 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Chen, J., Tu, R., Fang, X., Gu, Q., Zhou, Y., Cui, R., Han, Z., Zhang, L., Fang, Y., Qian, B.: Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon. J. Magn. Magn. Mater. 426, 708–713 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Jiangsu Laboratory of Advanced Functional Materials, Department of PhysicsChangshu Institute of TechnologyChangshuPeople’s Republic of China
  3. 3.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouPeople’s Republic of China
  4. 4.School of ScienceJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations