Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2837–2847 | Cite as

Effect of Different Nano-sized MgO Addition on YBa2Cu3O7-δ Superconductor

  • A. Abdulhayi
  • A. V. Gholap
  • R. Abd-ShukorEmail author
Original Paper


The effect of nanoparticle with different size on a superconductor is interesting because the size of the coherence length, penetration depth, and the magnetic flux in a superconductor is in the nanometer range. In this paper, we report the effects of different nano-sized MgO (20, 40, and 100 nm) addition on YBa2Cu3O7-δ(MgO)x for x = 0, 0.1, and 0.2 wt.%. X-ray diffraction patterns indicated a single YBa2Cu3O7 (YBCO) phase where the peaks were shifted to larger angles in the 20- and 40-nm MgO-added samples indicating induced stress of first order in the structure. The electrical resistance versus temperature was measured using the four-probe method. The transition temperature, Tc, for the pure YBCO showed Tc = 90 K and was suppressed to 78–80 K for the 20- and 40-nm MgO-added samples. AC susceptibility (χ = χ′ + iχ″) measurements showed a shift in the peak temperature, Tp, of the imaginary susceptibility χ″ towards lower temperatures for 20-nm MgO-added samples but increased with larger MgO (100 nm). This work showed that smaller nano-sized MgO suppressed the superconducting properties of YBCO more compared with the larger MgO.


AC susceptibility Transition temperature Critical current density Nano-sized metal oxide 


Funding Information

This research was supported by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/SG02/UKM. Addis Ababa University funded this research.


  1. 1.
    Yilmaz, M., Dogan, O.: Mater. Sci. Appl. 2, 1090 (2011)Google Scholar
  2. 2.
    Bartůněk, V., Smrčková, O.: Ceram. - Silikaty. 54, 133 (2010)Google Scholar
  3. 3.
    Salama, A.H., El-Hofy, M., Rammah, Y.S., Elkhatib, M.: Adv. Nat. Sci. Nanosci. Nanotechnol. 7(1), 015011 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Lee, S.-H., Choi, Y.: J. Nanosci. Nanotechnol. 11, 6219 (2011)CrossRefGoogle Scholar
  5. 5.
    Wei, K., Ing, K., Hamdan, M.S., Radiman, S., Abd-Shukor, R.: J. Supercond. Nov. Magn. 31, 2699 (2018)CrossRefGoogle Scholar
  6. 6.
    Agail, A., Abd-Shukor, R.: Appl. Phys. A. 112, 501 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Muhammad-Aizat, K., Abd-Shukor, R.: Sains Malaysiana. 47(7), 1579 (2018)CrossRefGoogle Scholar
  8. 8.
    Chen, Q., Fang, M., Jiao, Z., Zhang, Q., Wen, H., Zhao, Z.: Chin. Sci. Bull. 42(4), 285 (1997)CrossRefGoogle Scholar
  9. 9.
    Yahya N. A. A., Abd-Shukor, R.: Advan. in Cond. Matt. Phys. Article ID 821073 5 (2013)Google Scholar
  10. 10.
    Wei, W., Schwartz, J., Goretta, K.C., Balachandran, U., Bhargava, A.: Physica C. 298, 279 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Yahya, A.K., Salleh, Z., Jumali, M.H.: AIP Conf. Proc. 978, 265 (2007)ADSGoogle Scholar
  12. 12.
    Yahya, N.A.A., Abd-Shukor, R.: J. Supercond. Nov. Magn. 27(2), 329 (20)Google Scholar
  13. 13.
    Hua, L., Qiao, G.: Chem. Sustain. Dev. 8, 89 (2000)CrossRefGoogle Scholar
  14. 14.
    Krustin-Elbaum, Malozemoff, A.P., Yeshurun, Y., Cronemeyer, D.C., Holtzberg, F.: Phys. Rev. B. 39, 2936 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Worthington, T.K., Gallagher, W.J., Dinger, T.R.: Phys. Rev. Lett. 59, 1160 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Nur-Akasyah, J., Nur-Shamimie, N.H., Abd-Shukor, R.: J. Supercond. Nov. Magn. 30, 3361 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.School of Applied PhysicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations