Preparation of RE(DBM)3·Phen (RE=Eu3+,Tb3+) Plate-Loading Fe3O4 Nanospheres and their Magnetic-Optic Bifunctional Property

  • Yong HongEmail author
  • Hongbing Shi
  • Enhe WangEmail author
  • Xia Shu
  • Yucheng Wu
Original Paper


A facile wet chemical method has been used to synthesize bifunctional core-shell nanoparticles of Fe3O4@RE(DBM)3·Phen (RE=Eu3+,Tb3+) showing an interesting combination of magnetic and luminescent properties. This method is convenient, cheap, and efficient. The morphology, structure, luminescent, and magnetic properties of the nanoparticles were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis absorption, fluorescence emission, and superconducting quantum interference device magnetometer (SQUID-VSM). The maximum emission peaks of novel Eu3+ and Tb3+ nanocomposites are at 618 nm and at 514 nm, respectively. And their corresponding special saturation magnetization Ms. are 25.853 emu/g and 24.015 emu/g, respectively. For the nanoparticles, it is shown that there have better magnetic behavior and they may act as red- and green-emitting material with potential application for fluorescent magnetic particle testing. Moreover, this chemical route could be used to obtain the development of several bifunctional systems of other rare earth ions for practical application.


RE(DBM)3·Phen (RE=Eu3+,Tb3+Fe3O4 nanospheres Magnetic property Optical property 


Funding Information

This work was supported by a Science and technology support project of the General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (No. 2017QK165), Science and technology support project of the Anhui Bureau of Quality and Technical Supervision (No. 13zj370022 and No. 2018AHQT23), AVIC Institute of Fundamental Technology Innovation Fund (Grant No. JCY2015A001), Fundamental Research Funds for the Central Universities (No. JZ2015HGCH0150).


  1. 1.
    Son, A., Dhirapong, A., Dosev, D.K., Kennedy, I.M., Weiss, R.H., Hristova, K.R.: Anal. Bioanal. Chem. 390, 1829–1835 (2008)CrossRefGoogle Scholar
  2. 2.
    Bruchez, M., Moronne, M., Gin, P., Swess, S., Alivisatos, A.P.: Science. 281, 2013–2016 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Fan, Z., Shelton, M., Singh, A.K., Senapati, D., Khan, S.A., Ray, P.C.: ACS Nano. 6, 1065–1073 (2012)CrossRefGoogle Scholar
  4. 4.
    Xu, Z., Li, C., Yang, P., Zhang, C.M.: Cryst. Growth Des. 9, 4752–4758 (2009)CrossRefGoogle Scholar
  5. 5.
    Lee, S.S., Riduan, S.N., Erathodiyi, N., Lim, J., Cheong, J.L., Cha, J., Han, Y., Ying, J.Y.: Chem. Eur. J. 18, 7394–7404 (2012)CrossRefGoogle Scholar
  6. 6.
    Pires, G.P., Cost, I.F., Brito, H.F., Faustino, W.M., Teotonio, E.S.: Dalton T. 45, 10960–10968 (2016)CrossRefGoogle Scholar
  7. 7.
    Tong, L., Shi, J., Liu, D., Li, Q.: J. Phys. Chem. C. 116, 7153–7157 (2012)CrossRefGoogle Scholar
  8. 8.
    Yu, M., Chen, G., Liu, J., Tang, B.L., Huang, W.T.: J. Mater. Sci. Techn. 29, 801–805 (2013)CrossRefGoogle Scholar
  9. 9.
    Sun, S.H., Zeng, H.: J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRefGoogle Scholar
  10. 10.
    Liang, W., Yi, W., Li, Y., Zhang, Z., Yang, M., Hu, C., Chen, A.A.: Mater. Lett. 62, 284–304 (2010)Google Scholar
  11. 11.
    Hyuk, I.S., Jeong, U., Xia, Y.: Nat. Mater. 4, 671–675 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Gai, S., Li, C., Yang, P.P., Lin, J.: Chem. Rev. 114, 2343–2389 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, Y.L., Gong, C., Wang, Z.G., Zhang, J.L., Sun, D.H., Hong, G.Y., Ni, J.Z.: Mater. Lett. 97, 187–190 (2013)CrossRefGoogle Scholar
  14. 14.
    Khan, L.U., Muraca, D., Brito, H.F., Moscoso-Londono, O., Felinto, M.C.F.C., Pirota, K.R., Teotonio, E.E.S., Malta, O.L.: J. Alloys Compd. 686, 453–466 (2016)CrossRefGoogle Scholar
  15. 15.
    Hong, Y., Shu, X., Qin, Y.Q., Cui, J.W., Zhang, Y., Wu, Y.C.: J. Supercond. Nov. Magn. 29, 2367–2371 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, J., Chen, Q., Zeng, C., Hou, B.: Adv. Mater. 16, 137–140 (2004)CrossRefGoogle Scholar
  17. 17.
    Mathur, S., Sivakov, V., Shen, H., Barth, S., Cavelius, C., Nilsson, A., Kuhn, P.: Thin Solid Films. 502, 88–93 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Liu, X., Li, Y.F., Zhu, W.W., Fu, P.F.: CrystEngComm. 15, 4937–4947 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhou, Z.H., Wang, J., Liu, X., Chan, H.S.O.: J. Mater. Chem. 11, 1704–1709 (2001)CrossRefGoogle Scholar
  20. 20.
    Yu, S.Y., Zhang, H.J., Yu, J.B., Wang, C., Sun, L.N., Shi, W.D.: Langmuir. 23, 7836–7840 (2007)CrossRefGoogle Scholar
  21. 21.
    Tong, L.Z., Ren, X.Z., Chen, X.D., Ding, H., Yang, H.: RSC Adv. 4, 22792–22797 (2014)CrossRefGoogle Scholar
  22. 22.
    Carlos, L.D., Messaddeq, Y., Brito, H.F., Ferreira, R.A.S., Bermudez, V.D.Z., Ribeiro, S.J.L.: Adv. Mater. 12, 594–598 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anhui Special Equipment Inspection InstituteHefeiChina
  2. 2.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  3. 3.Key Laboratory of Advanced Functional Materials and Devices of Anhui ProvinceHefeiChina

Personalised recommendations