Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2903–2911 | Cite as

Synthesis and Characterization of Hydrophobic Fe3O4 Magnetic Nanoparticles with High Saturation Magnetization

  • Xiaoning SunEmail author
  • Song Wang
  • Yaping Wang
  • Kangning SunEmail author
Original Paper


A simple one-step solvothermal method is proposed to prepare hydrophobic Fe3O4 nanoparticles (MNPs) using iron acetylacetonate (Fe(acac)3), oleylamine (OAm), and ethylene glycol (EG). X-ray powder diffraction, scanning electron microscope, infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectrometry, and vibrating sample magnetometer are used to characterize the structure, morphology, and properties of products. The testing results indicate that the as-synthesized products are spherical-like hydrophobic MNPs, superparamagnetic at room temperature, with a saturation magnetization up to 76.8 emu/g. The good hydrophobic property of MNPs is attributed to the coverage of oleylamine, without causing a remarkable loss of magnetic property. In addition, the influences of material ratio, aging time, oleic acid, and stearic acid used as additives are studied in our research.


Hydrophobic Fe3O4 Magnetic properties Oleylamine 


Funding Information

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No. 81171463, 30870610).


  1. 1.
    Itoh, H., Sugimoto, T.: Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interf Sci. 265(2), 283–295 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Vereda, F., Rodríguez-González, B., de Vicente, J., Hidalgo-Álvarez, R.: Evidence of direct crystal growth and presence of hollow microspheres in magnetite particles prepared by oxidation of Fe (OH) 2. J Colloid Interf Sci. 318(2), 520–524 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Wu, J.-H., Ko, S.P., Liu, H.-L., Kim, S., Ju, J.-S., Kim, Y.K.: Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Mater. Lett. 61(14), 3124–3129 (2007)CrossRefGoogle Scholar
  4. 4.
    Chen, F., Gao, Q., Hong, G., Ni, J.: Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J. Magn. Magn. Mater. 320(11), 1775–1780 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Cabrera, L., Gutierrez, S., Menendez, N., Morales, M., Herrasti, P.: Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta. 53(8), 3436–3441 (2008)CrossRefGoogle Scholar
  6. 6.
    Marques, R.F., Garcia, C., Lecante, P., Ribeiro, S.J., Noé, L., Silva, N.J., et al.: Electro-precipitation of Fe 3 O 4 nanoparticles in ethanol. J. Magn. Magn. Mater. 320(19), 2311–2315 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Strobel, R., Pratsinis, S.E.: Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20(2), 190–194 (2009)CrossRefGoogle Scholar
  8. 8.
    Dang, F., Enomoto, N., Hojo, J., Enpuku, K.: Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason. Sonochem. 16(5), 649–654 (2009)CrossRefGoogle Scholar
  9. 9.
    Lao, L.L., Ramanujan, R.V.: Magnetic and hydrogel composite materials for hyperthermia applications. J. Mater. Sci. Mater. Med. 15(10), 1061–1064 (2004). CrossRefGoogle Scholar
  10. 10.
    Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., et al.: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A. 80(2), 333–341 (2007)CrossRefGoogle Scholar
  11. 11.
    Xu, J.-K., Zhang, F.-F., Sun, J.-J., Sheng, J., Wang, F., Sun, M.: Bio and nanomaterials based on Fe3O4. Molecules. 19(12), 21506 (2014)CrossRefGoogle Scholar
  12. 12.
    Xuan, S., Wang, Y.-X.J., Yu, J.C., Cham-Fai Leung, K.: Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem. Mater. 21(21), 5079–5087 (2009)CrossRefGoogle Scholar
  13. 13.
    Kim, D.-K., Zhang, Y., Voit, W., Rao, K., Kehr, J., Bjelke, B., et al.: Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr. Mater. 44(8), 1713–1717 (2001)CrossRefGoogle Scholar
  14. 14.
    Sharma, V., Waldner, F.: Superparamagnetic and ferrimagnetic resonance of ultrafine Fe3O4 particles in ferrofluids. J. Appl. Phys. 48(10), 4298–4302 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    Oh, S.-M., Myung, S.-T., Yoon, C.S., Lu, J., Hassoun, J., Scrosati, B., et al.: Advanced Na [Ni0. 25Fe0. 5Mn0. 25] O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett. 14(3), 1620–1626 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, S.H., Yu, S.-H., Lee, J.E., Jin, A., Lee, D.J., Lee, N., et al.: Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 13(9), 4249–4256 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Lin, L.-S., Cong, Z.-X., Cao, J.-B., Ke, K.-M., Peng, Q.-L., Gao, J., et al.: Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 8(4), 3876–3883 (2014)CrossRefGoogle Scholar
  18. 18.
    Ghazanfari, M.R., Kashefi, M., Shams, S.F., Jaafari, M.R.: Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int. 2016, 1 (2016)CrossRefGoogle Scholar
  19. 19.
    Li, X., Wei, J., Aifantis, K.E., Fan, Y., Feng, Q., Cui, F.Z., et al.: Current investigations into magnetic nanoparticles for biomedical applications. J. Biomed. Mater. Res. A. 104, 1285 (2016)CrossRefGoogle Scholar
  20. 20.
    Huang, W., Wang, X., Ma, G., Shen, C.: Study on the synthesis and tribological property of Fe3O4 based magnetic fluids. Tribol. Lett. 33(3), 187–192 (2009)CrossRefGoogle Scholar
  21. 21.
    Kalyani, R., Chockalingam, G., Gurunathan, K.: Tribological aspects of metal and metal oxide nanoparticles. Adv. Sci., Eng. Med. 8(3), 228–232 (2016)CrossRefGoogle Scholar
  22. 22.
    Niu JM, Zheng ZG, editors. Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method. Adv. Mater. Res. 900, 172–176 (2014)Google Scholar
  23. 23.
    Kandpal N, Sah N, Loshali R, Joshi R, Prasad J. Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J. Sci. Ind. Res. 73(2), 87–90 (2014)Google Scholar
  24. 24.
    Liz, L., Lopez Quintela, M., Mira, J., Rivas, J.: Preparation of colloidal Fe3O4 ultrafine particles in microemulsions. J. Mater. Sci. 29(14), 3797–3801 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Liu, Z., Wang, X., Yao, K., Du, G., Lu, Q., Ding, Z., et al.: Synthesis of magnetite nanoparticles in W/O microemulsion. J. Mater. Sci. 39(7), 2633–2636 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Shabani, F., Khodayari, A.: Structural, compositional, and biological characterization of Fe3O4 nanoparticles synthesized by hydrothermal method. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 45(3), 356–362 (2015)CrossRefGoogle Scholar
  27. 27.
    Wang, J., Sun, J., Sun, Q., Chen, Q.: One-step hydrothermal process to prepare highly crystalline Fe 3 O 4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 38(7), 1113–1118 (2003)CrossRefGoogle Scholar
  28. 28.
    Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., et al.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891–895 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Vuong, T.K.O., Le, T.L., Pham, D.V., Pham, H.N., Le Ngo, T.H., Do, H.M., et al.: Synthesis of high-magnetization and monodisperse Fe 3 O 4 nanoparticles via thermal decomposition. Mater. Chem. Phys. 163, 537–544 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhou, S., Jiang, W., Wang, T., Lu, Y.: Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil–water separation. Ind. Eng. Chem. Res. 54(20), 5460–5467 (2015)CrossRefGoogle Scholar
  31. 31.
    Raj, K., Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85(1), 233–245 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    Levy, M., Quarta, A., Espinosa, A., Figuerola, A., Wilhelm, C., García-Hernández, M., et al.: Correlating magneto-structural properties to hyperthermia performance of highly monodisperse iron oxide nanoparticles prepared by a seeded-growth route. Chem. Mater. 23(18), 4170–4180 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhao, Y., Fang, J., Wang, H., Wang, X., Lin, T.: Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv. Mater. 22(6), 707–710 (2010)CrossRefGoogle Scholar
  34. 34.
    Xu, Z., Shen, C., Hou, Y., Gao, H., Sun, S.: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21(9), 1778–1780 (2009)CrossRefGoogle Scholar
  35. 35.
    Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., Li, Y.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)CrossRefGoogle Scholar
  36. 36.
    Liu, J., Wang, L., Wang, J., Zhang, L.: Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe 3 O 4 nanoparticles. Mater. Res. Bull. 48(2), 416–421 (2013)CrossRefGoogle Scholar
  37. 37.
    Muhler, M., Schlögl, R., Ertl, G.: The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase. J. Catal. 138(2), 413–444 (1992)CrossRefGoogle Scholar
  38. 38.
    Hawn, D.D., DeKoven, B.M.: Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 10(2–3), 63–74 (1987)CrossRefGoogle Scholar
  39. 39.
    Yamashita, T., Hayes, P.: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254(8), 2441–2449 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Asakawa, K., Kawauchi, T., Zhang, X.W., Fukutani, K.: Non-collinear magnetic structure on the Fe3O4(111) surface. J. Phys. Soc. Jpn. 86(7), 074601 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    George, M., Mary John, A., Nair, S.S., Joy, P.A., Anantharaman, M.R.: Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Wu, J.-B., Lin, Y.-F., Wang, J., Chang, P.-J., Tasi, C.-P., Lu, C.-C., et al.: Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. Inorg. Chem. 42(15), 4516–4518 (2003)CrossRefGoogle Scholar
  43. 43.
    Charlier, J., Cousty, J., Xie, Z., Poulennec, C., Bureau, C.: Adsorption of substituted pyrrolidone molecules on Au (111): an STM and XPS study. Surf. Interface Anal. 30(1), 283–287 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanChina
  2. 2.Key Laboratory of Engineering CeramicsShandong UniversityJinanChina

Personalised recommendations