Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2913–2922 | Cite as

First-Principle Studies of Ferrimagnetic Double Perovskite Ca2FeMoO6 Compound

  • O. Sebaa
  • Y. Zaoui
  • K. O. ObodoEmail author
  • L. Beldi
  • B. Bouhafs
Original Paper


Using first-principle calculations, the structural, electronic, and magnetic properties of the Ca2FeMoO6 double perovskite compound is investigated. Different spin-ordering: ferrimagnetic (FiM), ferromagnetic (FM), and anti-ferromagnetic (AFM1 and AFM2) using the generalized gradient approximation (GGA) and GGA + U (Hubbard Coulomb onsite correction) are evaluated to determine the theoretical ground state. The value of the Hubbard Coulomb U parameter is varied from 1 to 4 eV. The ground state is found to be a FM spin-ordering within the GGA approach and FiM spin-ordering within the GGA + U approach (where U ≥ 3 eV) which is the experimental preferred configuration. We obtain the FiM spin-ordered half semiconducting state within the GGA + U approach for the Ca2FeMoO6 compound. Within the GGA + U (where U ≥ 3 eV) approach, the FM phase maintains a half-metallic character with a net magnetic moment of 4 0 μB, whereas the FiM phase have a spin gapless semiconducting (SGS) behavior at U = 3 eV, and an insulating character at U = 4 eV, with a net magnetic moment of 4 0 μB. The main features found in the density of states profile show that the hybridization of the Fe and Mo d orbitals play an important role in determining the electronic and magnetic character of this compound.


Density functional theory Ferrimagnetism GGA + U Ordered double perovskite Spin gapless semiconductors 



B.B acknowledges the Algerian Academy of Sciences and Technology (AAST) and the Abdus-Salam International Center for Theoretical Physics (ICTP, Trieste, Italy). K.O.O thanks Moritz Braun and acknowledges HySA-Infrastructure Centre of Competence, Faculty of Engineering, North–West.


  1. 1.
    Patterson, F.K., Moeller, C.W., Ward, R.: Inorg. Chem. 2, 196–198 (1963)Google Scholar
  2. 2.
    Sleight, A.W., Ward, R.: J. Am. Chem. Soc. 83, 1088–1090 (1961)Google Scholar
  3. 3.
    Sleight, A., Weiher, J.: J. Phys. Chem. Solids. 33, 679–687 (1972)ADSGoogle Scholar
  4. 4.
    Souidi, A., Bentata, S., Benstaali, W., Bouadjemi, B., Abbad, A., Lantri, T.: Mater. Sci. Semicond. Process. 43, 196–208 (2016)Google Scholar
  5. 5.
    Djelti, B., Bentata, S., Benstaali, W., Abbad, A., Benosman, W., Benmalem, Y., Cherid, S.: Applied Physics A. 124, 622 (2018)Google Scholar
  6. 6.
    Haid, S., Bouadjemi, B., Bentata, S., Lantri, T., Çoruh, A., Zitouni, A., Bouhafs, B., Aziz, Z.: J. Supercond. Nov. Magn. (2018) Google Scholar
  7. 7.
    Widom, M., Quader, K.: Phys. Rev. B. 88, 045117 (2013)ADSGoogle Scholar
  8. 8.
    Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Nature. 395, 677–680 (1998)ADSGoogle Scholar
  9. 9.
    Ritter, C., Ibarra, M., Morellon, L., Blasco, J., Garcia, J., De Teresa, J.: J. Phys. Condens. Matter. 12, 8295 (2000)ADSGoogle Scholar
  10. 10.
    Wang, X., Sui, Y., Cheng, J., Qian, Z., Miao, J., Liu, Z., Zhu, R., Su, W., Tang, J., Ong, C.: J. Phys. Condens. Matter. 19, 026215 (2007)ADSGoogle Scholar
  11. 11.
    Dutta, A., Sinha, T.: Solid State Commun. 150, 1173–1177 (2010)ADSGoogle Scholar
  12. 12.
    Djefal, A., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Bouhafs, B.: Int. J. Comput. Mater. Sci. Eng. 6, 1750027 (2017)Google Scholar
  13. 13.
    Djefal, A., Amari, S., Obodo, K., Beldi, L., Bendaoud, H., Evans, R., Bouhafs, B.: Spin. 07, 1750009 (2017)ADSGoogle Scholar
  14. 14.
    Rubi, D., Frontera, C., Roig, A., Nogués, J., Munoz, J., Fontcuberta, J.: J. Phys. Condens. Matter. 17, 8037 (2005)ADSGoogle Scholar
  15. 15.
    Rubi, D., Nogués, J., Munoz, J., Fontcuberta, J.: Mater. Sci. Eng. B. 126, 279–282 (2006)Google Scholar
  16. 16.
    Barbosa, L., Ardila, D.R., Andreeta, J.: J. Cryst. Growth. 254, 378–383 (2003)ADSGoogle Scholar
  17. 17.
    Di Castro, D., Dore, P., Khasanov, R., Keller, H., Mahadevan, P., Ray, S., Sarma, D., Postorino, P.: Phys. Rev. B. 78, 184416 (2008)ADSGoogle Scholar
  18. 18.
    E. Burzo, I. Balasz, in: AIP conference proceedings, AIP Publishing, 2016, pp. 080003Google Scholar
  19. 19.
    Burzo, E., Balasz-Muresan, I.: Rom J Phys. 62, 601 (2017)Google Scholar
  20. 20.
    Varaprasad, S., Thyagarajan, K., Markandeya, Y., Suresh, K., Bhikshamaiah, G.: J Supercond Novel Magn. 1–7 (2018). Google Scholar
  21. 21.
    Yang, L., Ceder, G.: Phys. Rev. B. 88, 224107 (2013)ADSGoogle Scholar
  22. 22.
    Wang, J.-F., Zhuang, Z.-T., Liu, S.-S., Gao, Q.-Q.: Chinese Physics B. 27, 127201 (2018)Google Scholar
  23. 23.
    Moreno, N., Barbosa, L., Ardila, D.R., Andreeta, J.P.: J. Supercond. Nov. Magn. 26, 2501–2503 (2013)Google Scholar
  24. 24.
    Szotek, Z., Temmerman, W., Svane, A., Petit, L., Winter, H.: Phys. Rev. B. 68, 104411 (2003)ADSGoogle Scholar
  25. 25.
    Szotek, Z., Temmerman, W., Svane, A., Petit, L., Stocks, G., Winter, H.: J. Magn. Magn. Mater. 272, 1816–1817 (2004)ADSGoogle Scholar
  26. 26.
    Bonilla, C., Téllez, D., Rodríguez Martínez, J.A., Roa-Rojas, J.: Braz. J. Phys. 36, 1101–1104 (2006)ADSGoogle Scholar
  27. 27.
    Borges, R., Thomas, R., Cullinan, C., Coey, J., Suryanarayanan, R., Ben-Dor, L., Pinsard-Gaudart, L., Revcolevschi, A.: J. Phys. Condens. Matter. 11, L445 (1999)ADSGoogle Scholar
  28. 28.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz,Techn. Universität Wien, Austria), 2018Google Scholar
  29. 29.
    Momma, K., Izumi, F.: J. Appl. Crystallogr. 44, 1272–1276 (2011)Google Scholar
  30. 30.
    Sjöstedt, E., Nordström, L., Singh, D.J.: Solid State Commun. 114, 15–20 (2000)ADSGoogle Scholar
  31. 31.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Phys. Rev. B. 44, 943 (1991)ADSGoogle Scholar
  32. 32.
    Cococcioni, M., De Gironcoli, S.: Phys. Rev. B. 71, 035105 (2005)ADSGoogle Scholar
  33. 33.
    Obodo, K.O., Chetty, N.: J. Nucl. Mater. 442, 235–244 (2013)ADSGoogle Scholar
  34. 34.
    Obodo, K.O., Ouma, C.N.M., Obodo, J.T., Braun, M.: Phys. Chem. Chem. Phys. 19, 19050–19057 (2017)Google Scholar
  35. 35.
    Gryaznov, D., Heifets, E., Sedmidubsky, D.: Phys. Chem. Chem. Phys. 12, 12273–12278 (2010)Google Scholar
  36. 36.
    Dorado, B., Amadon, B., Freyss, M., Bertolus, M.: Phys. Rev. B. 79, 235125 (2009)ADSGoogle Scholar
  37. 37.
    Murnaghan, F.D.: Proc. Natl. Acad. Sci. 30, 244–247 (1944)ADSGoogle Scholar
  38. 38.
    Blöchl, P.E., Jepsen, O., Andersen, O.K.: Phys. Rev. B. 49, 16223 (1994)ADSGoogle Scholar
  39. 39.
    Liang, P., Jiang, J.-J., Ma, X.-G., Tian, B.: Trans. Nonferrous Metals Soc. China. 17, s109–s112 (2007)Google Scholar
  40. 40.
    Alonso, J., Casais, M., Martínez-Lope, M., Martínez, J., Velasco, P., Munoz, A., Fernández-Díaz, M.: Chem. Mater. 12, 161–168 (2000)Google Scholar
  41. 41.
    Pinsard-Gaudart, L., Surynarayanan, R., Revcolevschi, A., Rodriguez-Carvajal, J., Greneche, J., Smith, P., Thomas, R., Borges, R., Coey, J.: J. Appl. Phys. 87, 7118–7120 (2000)ADSGoogle Scholar
  42. 42.
    Greneche, J., Venkatesan, M., Suryanarayanan, R., Coey, J.: Phys. Rev. B. 63, 174403 (2001)ADSGoogle Scholar
  43. 43.
    Wang, X.: Phys. Rev. Lett. 100, 156404 (2008)ADSGoogle Scholar
  44. 44.
    He, J., Zhou, P., Jiao, N., Chen, X., Lu, W., Sun, L.: RSC Adv. 5, 46640–46647 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. Sebaa
    • 1
  • Y. Zaoui
    • 1
  • K. O. Obodo
    • 2
    Email author
  • L. Beldi
    • 1
  • B. Bouhafs
    • 1
  1. 1.Modeling and Simulation in Materials Science Laboratory, Physics DepartmentDjillali Liabès University of Sidi Bel-AbbèsSidi Bel-AbbèsAlgeria
  2. 2.HySA Infrastructure Centre of Competence, Faculty of EngineeringNorth-West University South Africa (NWU)PotchefstroomSouth Africa

Personalised recommendations