Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2959–2972 | Cite as

Influence of Annealing on Microstructure, Electrochemical, and Magnetic Properties of Co-Doped SrTiO3 Nanocubes

  • P. Songwattanasin
  • A. Karaphun
  • S. Hunpratub
  • S. Maensiri
  • E. SwatsitangEmail author
  • V. Amornkitbamrung
Original Paper
  • 136 Downloads

Abstract

Effect of annealing on microstructure, electrochemical, and magnetic properties of Co-doped SrTiO3 nanocubes obtained by the hydrothermal method was studied. X-ray diffraction (XRD) results of all as-prepared and annealed Co-doped SrTiO3 samples revealed a cubic perovskite structure with the second phases of SrCO3 and Co3O4in as-prepared and annealed SrTi0.90Co0.10O3 samples, respectively. Agglomerated nanocubes could be clearly observed in all as-prepared and annealed Co-doped samples by scanning electron microscope (SEM) and transmission electron microscope (TEM). X-ray absorption near edge spectroscopy (XANES) results suggested the presence of Co2+ cations in as-prepared Co-doped SrTiO3 samples, while both of Co2+ and Co3+ cations were found in annealed Co-doped SrTiO3 samples. The cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) results of as-prepared and annealed SrTi1-xCoxO3 (x = 0.05, 0.075 and 0.10) electrodes revealed pseudocapacitor behavior of the Faradaic redox reaction type. The specific capacitance (Csc) was affected by the increase of Co content in all as-prepared and annealed Co-doped SrTiO3 samples with an excellent cycling stability after 200 cycle test of 97.24% and the highest value of 75.28 F g−1 at 1 A g−1 in an annealed SrTi0.925Co0.075O3 electrode. Magnetization measurements at room temperature using vibrating sample magnetometer (VSM) revealed diamagnetic behavior of as-prepared SrTiO3 sample, whereas paramagnetic behavior was observed in all as-prepared Co-doped SrTiO3 samples. After annealing, undoped sample exhibited paramagnetic behavior, whereas ferromagnetic behavior was observed in all Co-doped SrTiO3 samples with the increase of saturation magnetization (Ms) at 10 kOe from 0.58 to 1.63 emu/g and the coercive field (Hc) from 43.71 to 123.87 Oe, suggested to originate from the face-center exchange (FCE) mechanism.

Keywords

Co-doped SrTiO3 nanocubes Hydrothermal method Annealing effect Microstructure Electrochemical and magnetic properties 

Notes

Acknowledgements

The Synchrotron Light Research Institute (SLRI), Nakhon ratchasima, Thailand was acknowledged for XAS measurements. was also grateful

Funding information

This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (PHD/0238/2552) and co-financially supported by Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University, Khon Kaen, 40002, Thailand.

References

  1. 1.
    Jayalakshmi, M., Balasubramanian, K.: Simple capacitors to supercapacitors: an overview. Int J Electrochem Sci. 3, 1196–1217 (2008)Google Scholar
  2. 2.
    Wang, Y.G., Wang, Z.-D., Xia, Y.-Y.: An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta. 50, 5641–5646 (2005)CrossRefGoogle Scholar
  3. 3.
    Wu, J., Wang, Q., Umar, A., Sun, S., Huang, L., Wang, J., Gao, J.: Highly sensitive pnitrophenol chemical sensor based on crystalline a-MnO2 nanotubes. New J Chem. 38, 4420–4426 (2014)CrossRefGoogle Scholar
  4. 4.
    Jiao, F., Frei, H.: Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci. 3, 1018–1027 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z., Kong, J.: Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater. 193, 325–329 (2011)CrossRefGoogle Scholar
  6. 6.
    Nassar, M.Y., Ahmed, I.S.: Template-free hydrothermal derived cobalt oxide nanopowders: synthesis, characterization, and removal of organic dyes. Mater Res Bull. 47, 2638–2645 (2012)CrossRefGoogle Scholar
  7. 7.
    Clement Raj, C., Prasanth, R.: Review—advent of TiO2 nanotubes as supercapacitor electrode. J Electrochem Soc. 165(9), E345–E358 (2018)CrossRefGoogle Scholar
  8. 8.
    Sudarto, J., Subagio, A., Priyono, Pardoyo, Yudianti, R., Subhan: Use of carbon compounds (carbon nanotubes and activated carbon) in the improvement of TiO2-carbon supercapacitor performance. Makara J Sci. 21(2), 53–58 (2017)CrossRefGoogle Scholar
  9. 9.
    Selvakumar, M., Krishna Bhat, D.: Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Appl Surf Sci. 263, 236–241 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, C.-H., Meen, T.-H., Ji, J.-W., Chao, S.-M., Wu, T.-M., Tsai, J.-K., Wu, T.-C.: Effects of TiO2 nanoparticle doping in coconut-shell carbon on the properties of supercapacitor. Sensors Mater. 30(3), 645–653 (2018)CrossRefGoogle Scholar
  11. 11.
    Elmouwahidi, A., Bailón-García, E., Castelo-Quibén, J., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J., Carrasco-Marín, F.: Carbon-TiO2 composites as high performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. J Mater Chem A. 6, 633 (2017).  https://doi.org/10.1039/C7TA08023A CrossRefGoogle Scholar
  12. 12.
    Karaphun, A., Hunpratub, S., Swatsitang, E.: Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method. Microelectron Eng. 126, 42–48 (2014)CrossRefGoogle Scholar
  13. 13.
    Karthick, K., Rao Ede, S., Nithiyanantham, U., Kundu, S.: Low-temperature synthesis of SrTiO3 nano-assemblies on DNA scaffold and their applications in dye sensitized solar cell and supercapacitor. New J Chem. 41, 3473 (2017).  https://doi.org/10.1039/C7NJ00204A CrossRefGoogle Scholar
  14. 14.
    Ghosh, D., Giri, S., Sahoo, S., Das, C.K.: In situ synthesis of graphene/amine-modified graphene, polypyrrole composites in presence of SrTiO3 for supercapacitor applications. Polym-Plast Technol. 52, 213–220 (2013)CrossRefGoogle Scholar
  15. 15.
    Ahmad, K., Mohammad, A., Mathura, P., Mobin, S.M.: Preparation of SrTiO3 perovskite decorated rGO and electrochemical detection of nitroaromatics. Electrochim Acta. 215, 435–446 (2016)CrossRefGoogle Scholar
  16. 16.
    Bera, A., Wu, K., Shaikh, A., Alarousu, E., Mohammed, O.F., Wu, T.: Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J Phys Chem C. 118, 28494–28501 (2014)CrossRefGoogle Scholar
  17. 17.
    Yanhong, H., Huibin, L., Haizhong, G., Lifeng, L., Meng, K., Zhenghao, C., Yueliang, Z., Kun, Z., Kuijuan, J., Gouzen, Y.: Structure and electrical characteristics of Nb-doped SrTiO3 substrates. Chin Sci Bull. 51(16), 2035–2037 (2006)CrossRefGoogle Scholar
  18. 18.
    Kumar, A., Suresh, P., Kumar, M., Srikanth, H., Post, M., Sahner, K., Moos, R., Srinath, S.: Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J Phys Conf Ser. 200, 092010 (2010)CrossRefGoogle Scholar
  19. 19.
    Karaphun, A., Hunpratub, S., Putjuso, T., Swatsitang, E.: Characterization and dielectric properties of SrTi1-xMnxO3 ceramics. Jpn J Appl Phys. 54, 06FH09 (2015)CrossRefGoogle Scholar
  20. 20.
    Wannasen, L., Swatsitang, E.: Magnetic properties dependence on Fe2+/Fe3+ and oxygen vacancies in SrTi0.95Fe0.05O3 nanocrystalline prepared by hydrothermal method. Microelectron Eng. 146, 92–98 (2015)CrossRefGoogle Scholar
  21. 21.
    Karaphun, A., Hunpratub, S., Phokha, S., Putjuso, T., Swatsitang, E.: Effect of co cations and oxygen vacancy on optical and magnetic properties of SrTi1−xCoxO3 nanoparticles prepared by the hydrothermal method. J Mater Sci Mater Electron. 28, 8294–8303 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhang, W., Li, H.-P., Pan, W.: Ferromagnetism in electrospun Co–doped SrTiO3 nanofibers. J Mater Sci. 47(23), 8216–8222 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Qiao, P.T., Zhao, Z.H., Zhao, Y.G., Zhang, X.P., Zhang, W.Y., Ogale, S.B., Shinde, S.R., Venkatesan, T., Lofland, S.E., Lanci, C.: Structural, electrical transport and magnetic properties of the co-doped La0.5Sr0.5TiO3 at high temperatures. Thin Solid Films. 468, 8–11 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Herranz, G., Basletic, M., Bibes, M., Ranchal, R., Hamzic, A., Tafra, E., Bouzehouane, K., Jacquet, E., Contour, J.P., Barthélémy, A., Fert, A.: Full oxide heterostructure combining a high-TC diluted ferromagnet with a high-mobility conductor. Phys Rev B. 73, 064403 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Maiaugree, W., Karaphun, A., Pimsawad, A., Amornkitbamrung, V., Swatsitang, E.: Influence of SrTi1-xCoxO3 NPs on electrocatalytic activity of SrTi1-xCoxO3 NPs/PEDOT-PSS counter electrodes for high efficiency dye sensitized solar cells. Energy. 154, 182–189 (2018)CrossRefGoogle Scholar
  26. 26.
    Tsumura, T., Matsuoka, K., Toyoda, M.: Formation and annealing of BaTiO3 and SrTiO3 nanoparticles in KOH solution. J Mater Sci. 26(1), 33–38 (2010)Google Scholar
  27. 27.
    Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction, Third edn. Prentice Hall, New Jersey (2001)Google Scholar
  28. 28.
    Cai, H.L., Wu, X.S., Gao, J.: Effect of oxygen content on structural and transport properties in SrTiO3−x thin films. Chem Phys Lett. 467(4–6), 313–317 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Fuentes, S., Zarate, R.A., Chavez, E., Mun˜oz, P., Dı’az-Droguett, D., Leyton, P.: Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method. J Mater Sci. 45, 1448–1452 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Hu, J., Cao, E., Sun, L., Qin, H.: Vacancy induced magnetism in SrTiO3. J Magn Magn Mater. 324, 1770–1775 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Songwattanasin
    • 1
  • A. Karaphun
    • 2
  • S. Hunpratub
    • 3
  • S. Maensiri
    • 4
  • E. Swatsitang
    • 2
    • 5
    Email author
  • V. Amornkitbamrung
    • 5
  1. 1.Materials Science and Nanotechnology Program, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Department of Physics, Faculty of ScienceUdon Thani Rajabhat UniversityUdon ThaniThailand
  4. 4.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  5. 5.Institute of Nanomaterials Research and Innovation for Energy (IN-RIE)Khon Kaen UniversityKhon KaenThailand

Personalised recommendations