Advertisement

Low Temperature and Surfactant-Free Hydrothermal Synthesis of CoNi Nanoparticles: Structure, Microstructure, and Magnetic Properties

  • A. Bensouilah
  • A. GuittoumEmail author
  • M. Hemmous
  • D. Martínez-Blanco
  • P. Gorria
  • J. A. Blanco
Original Paper
  • 17 Downloads

Abstract

We report on the synthesis of Co30Ni70 nanoparticles using hydrothermal method at low temperatures and short times (100 °C, 2 h) without any surfactant or external magnetic field. The effect of NaOH concentration on the crystal structure, microstructure, and magnetic properties of CoNi samples has been investigated by x-ray diffraction (XRD), scanning (SEM) and high-resolution transmission (HRTEM) electron microscopy, and vibrating sample magnetometry (VSM). From the Rietveld refinement of x-ray powder diffraction patterns, we have evidenced the coexistence of two phases with face-centered cubic (FCC) and hexagonal (HCP) crystal structures, being 12 nm and 3 nm, respectively, the values for the mean grain size of both phases. SEM images show that the basic microstructure is composed of quasi-spheres and a chain-like morphology appears with increasing the amount of NaOH. HRTEM images evidence the formation of such chains, and confirm the coexistence of FCC and HCP phases. The magnetic hysteresis loops show a clear dependence of the coercivity on the particle morphology indicating the role played by the magnetic shape anisotropy.

Keywords

CoNi Nanoparticles Hydrothermal Morphology Magnetism 

Notes

Acknowledgements

We thank the SCTs of the University of Oviedo for the assistance in the measurements.

Funding Information

The authors from Spain acknowledge financial support from Spanish MINECO (research project MAT2014-56116-C04-R).

References

  1. 1.
    Kurlyandskaya, G.V., Bhagat, S.M., Luna, C., Vazquez, M.: Microwave absorption of nanoscale CoNi powders. J. Appl. Phys. 99(10), 1–6 (2006)Google Scholar
  2. 2.
    Ergeneman, O., Sivaraman, K.M., Pan, S., Pellicer, E., Teleki, A., Hirt, A.M., Bar, M.D., Nelson, B.J.: Morphology, structure and magnetic properties of cobalt-nickel films obtained from acidic electrolytes containing glycine. Electrochim. Acta. 56(3), 1399–1408 (2011)CrossRefGoogle Scholar
  3. 3.
    Wu, K., Wei, X., Zhou, X., Wu, D., Liu, X., Ye, Y., Wang, Q.: NiCo2 alloys: controllable synthesis , magnetic properties , and catalytic applications in reduction of 4-nitrophenol. Phys. Chem. C. 115, 16268–16274 (2011)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Bain, J.A., Zhu, J.G., Abelmann, L., Onoue, T.: Dynamic domain motion of thermal-magnetically formed marks on CoNi/Pt multilayers. J. Appl. Phys. 100(5), (2006)Google Scholar
  5. 5.
    Zhang, D.E., Ni, X.M., Zhang, X.J., Zheng, H.G.: Synthesis and characterization of Ni-Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 302(2), 290–293 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Arief, I., Mukhopadhyay, P.K.: Amphiphilic triblock copolymer-assisted synthesis of hierarchical NiCo nano-flowers by homogeneous nucleation in liquid polyols. J. Magn. Magn. Mater. 372, 214–223 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, L., Gao, Y., Xue, Q., Liu, H., Xu, T.: Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits. Appl. Surf. Sci. 242, 326–332 (2005)Google Scholar
  8. 8.
    Hu, M.J., Lin, B., Yu, S.H.: Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of NiCo alloy microstructures. Nano. Res. 1, 303–313 (2008)Google Scholar
  9. 9.
    Xu, C., Nie, D., Chen, H., Wang, Y., Liu, Y.: Template-free synthesis of magnetic CoNi nanoparticles via a solvothermal method. Mater. Lett. 138, 158–161 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, H., Liao, J., Feng, Y., Yu, S., Zhang, X., Jin, Z.: Hollow CoNi alloy submicrospheres consisting of CoNi nanoplatelets: facile synthesis and magnetic properties. Mater. Lett. 67(1), 346–348 (2012)CrossRefGoogle Scholar
  11. 11.
    Yasir Rafique, M., Pan, L., Farid, A.: From nano-dendrite to nano-sphere of Co100−xNix alloy: composition dependent morphology, structure and magnetic properties, vol. 656. Elsevier Ltd, Amsterdam (2016)Google Scholar
  12. 12.
    Chen, H., Xu, C.: Surfactant-assisted hydrothermal synthesis of 3D urchin-like cobalt-nickel microstructures. Mater. Lett. 162, 13–16 (2016)CrossRefGoogle Scholar
  13. 13.
    Rafique, M.Y., Pan, L., Iqbal, M.Z., Ud-Din, R., Qiu, H., Farooq, M.H., Guo, Z., Ellahi, M.: Fabrication of CoNi alloy hollow-nanostructured microspheres for hydrogen storage application. J. Nanopart. Res. 15(7), (2013)Google Scholar
  14. 14.
    Wei, X., Zhou, X., Wu, K., Chen, Y.: 3-D flower-like NiCo alloy nano/microstructures grown by a surfactant-assisted solvothermal process. Cryst. Eng. Comm. 13, 1328–1332 (2011)Google Scholar
  15. 15.
    Zhu, L.P., Xiao, H., Fu, S.: Surfactant-assisted synthesis and characterization of novel chain-like CoNi. Eur. J. Inorg. Chem. 2007, 3947–3951 (2007)Google Scholar
  16. 16.
    Nie, D., Xu, C., Chen, H., Wang, Y., Li, J., Liu, Y.: Chain-like CoNi alloy microstructures fabricated by a PVP-assisted solvothermal process. Mater. Lett. 131, 306–309 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, H., Xu, C.: Novel chain-like cobalt–nickel microstructures fabricated by a CTAB-assisted hydrothermal method. Mater. Lett. 166, 188–191 (2016)CrossRefGoogle Scholar
  18. 18.
    Lutterotti, H.W.L., Matthies, S., Wenk, R.H.: MAUD- a friendly Java program for materials analysis using diffraction. Newsletter of the CPD 21, 14–15 (1999)Google Scholar
  19. 19.
    Rietveld, M.H.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 22, 65 (1969)Google Scholar
  20. 20.
    Young, R.: The Rietveld Method. Oxford Science Publications, Oxford (1995)Google Scholar
  21. 21.
    Chikazumi, S., Graham, C.D.: Physics of Ferromagnetism, 2nd edn. Oxford University Press, Oxford (2010)Google Scholar
  22. 22.
    Rinaldi-Montes, N., et al.: Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix. J. Mater. Chem. C. 3, 5674 (2015)Google Scholar
  23. 23.
    Bouremana, A., Guittoum, A., Hemmous, M., Martínez-Blanco, D., Gorria, P., Blanco, J.A., Benrekaa, N.: Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method. Mater. Chem. Phys. 160, 435 (2015)CrossRefGoogle Scholar
  24. 24.
    Bouremana, A., Guittoum, A., Hemmous, M., Rahal, B., Sunol, J.J., Martínez-Blanco, D., Blanco, J.A., Gorria, P., Benrekaa, N.: Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route. J. Magn. Magn. Mater. 358-359, 11 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Bensouilah
    • 1
  • A. Guittoum
    • 2
    Email author
  • M. Hemmous
    • 2
  • D. Martínez-Blanco
    • 3
  • P. Gorria
    • 4
  • J. A. Blanco
    • 5
  1. 1.LPM, Faculty of PhysicsUSTHBAlgiersAlgeria
  2. 2.Nuclear Research Centre of AlgiersAlgiersAlgeria
  3. 3.SCTs, EPMUniversity of OviedoMieresSpain
  4. 4.Department of Physics & IUTA, EPIUniversity of OviedoGijónSpain
  5. 5.Department of PhysicsUniversity of OviedoOviedoSpain

Personalised recommendations