Advertisement

Structural, Optical, Dielectric, and Magnetic Characteristics of Nd Ions Substituted BaFe11(Sn0.5Mg0.5)xO19 M-Type Hexaferrite via Co-precipitation

  • Ghulam Abbas Ashraf
  • Lanting ZhangEmail author
  • Waseem Abbas
  • Muhammad Ajmal
  • Ghulam MurtazaEmail author
  • Mukhtar Ahmad
Original Paper
  • 21 Downloads

Abstract

Nanoparticles (NPs) of barium hexaferrite were synthesized by a chemical co-precipitation technique in an aqueous solution with a nominal composition of BaFe11(Sn0.5Mg0.5)1−xNdxO19 (x = 0, 0.5, 1). XRD and FTIR analyses were performed to study the crystal structure of the magnetic powders (MPs) in order to obtain details on the hexaferrite structure. Grain morphology and elemental composition were assessed by SEM and EDS, respectively, and nano-sized hexagonal platelet-like structures in all MPs were demonstrated. All of the structural parameters such as “a”, “c”, V(cell) and Dx have been altered with successful incorporation of Nd into hexagonal lattices, thereby the band gap Eg first increased x ≤ 0.5 then decreased up to x = 1 (i.e., drawn via a Tauc plot) from 1.53–1.82 eV. The measurements of dielectric properties depict relaxation behavior at higher frequencies. The dielectric measurements increase with increased hexaferrite. Furthermore, the magnetic properties of all MPs were examined by VSM at room temperature (RT). The saturation magnetization (Ms), remnant magnetization (Mr), and coercivity (Hc) were linearly decreased by the SnMg content, whereas an increasing trend appeared with the additional Nd content. However, the squareness ratio increased with an increase in the content (x). These outcomes make this substitution an excellent candidate for multiple applications such as optical, electrical-based devices, circulators, and recording materials.

Keywords

Barium M-type hexaferrites (BaM) Co-precipitation Optical band Dielectric constant Magnetization 

Notes

Funding Information

This work was done by the support of the National Key Research and Development Program of China (grant no. 2017YFB0701900), and the Science and Technology Commission of Shanghai Municipality (grant nos. 15DZ2260303 and 16DZ2260602).

References

  1. 1.
    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191 (2012).  https://doi.org/10.1016/j.pmatsci.2012.04.001 CrossRefGoogle Scholar
  2. 2.
    Abbas, W., Ahmad, I., Kanwal, M., Murtaza, G., Ali, I., Azhar Khan, M., Akhtar, M.N., Ahmad, M.: Structural and magnetic behavior of Pr-substituted M-type hexagonal ferrites synthesized by sol-gel autocombustion for a variety of applications. J. Magn. Magn. Mater. 374, 187–191 (2015).  https://doi.org/10.1016/j.jmmm.2014.08.029 ADSCrossRefGoogle Scholar
  3. 3.
    Ashraf, G.M.G.A., Zhang, L., Abbas, W.: Synthesis and characterizations of Al-Sm substituted Ba-Sr M-type hexagonal ferrite nanoparticles via sol-gel route. Ceram. Int. 44, 1–8 (2018).  https://doi.org/10.1016/j.ceramint.2018.07.096 CrossRefGoogle Scholar
  4. 4.
    Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, magnetic and dielectrical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016).  https://doi.org/10.1016/j.molstruc.2015.11.004 ADSCrossRefGoogle Scholar
  5. 5.
    Poorbafrani, A., Kameli, P., Salamati, H.: Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186–191 (2013).  https://doi.org/10.1007/s10853-012-6727-1 ADSCrossRefGoogle Scholar
  6. 6.
    Auwal, I.A., Baykal, A., Güner, S., Sertkol, M., Sözeri, H.: Magneto-optical properties BaBixLaxFe12-2xO19(0.0≤x≤0.5) hexaferrites. J. Magn. Magn. Mater. 409, 92–98 (2016).  https://doi.org/10.1016/j.jmmm.2016.02.093 ADSCrossRefGoogle Scholar
  7. 7.
    Chawla, S.K., Meena, S.S., Kaur, P., Mudsainiyan, R.K., Yusuf, S.M.: Effect of site preferences on structural and magnetic switching properties of CO-Zr doped strontium hexaferrite SrCoxZrxFe(12-2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015).  https://doi.org/10.1016/j.jmmm.2014.10.168. ADSCrossRefGoogle Scholar
  8. 8.
    Cheng, Y., Ren, X.: Enhanced microwave absorbing properties of La3+ substituting barium hexaferrite. J. Supercond. Nov. Magn. 29, 803–808 (2016).  https://doi.org/10.1007/s10948-015-3355-4 CrossRefGoogle Scholar
  9. 9.
    Belec, B., Dražić, G., Gyergyek, S., Podmiljšak, B., Goršak, T., Komelj, M., Nogués, J., Makovec, D.: Novel Ba-hexaferrite structural variations stabilized on the nanoscale as building blocks for epitaxial bi-magnetic hard/soft sandwiched maghemite/hexaferrite/maghemite nanoplatelets with out-of-plane easy axis and enhanced magnetization. Nanoscale. 9, 17551–17560 (2017).  https://doi.org/10.1039/C7NR05894B CrossRefGoogle Scholar
  10. 10.
    Dimitrov, T.K.V.: Classification of simple oxides: a polarizability approach. J. Solid State Chem. 163, 100–112 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Fang, H.C., Ong, C.K., Zhang, X.Y., Li, Y., Wang, X.Z., Yang, Z.: Low temperature characterization of nano-sized BaFe12-2xZnxSnxO19 particles. J. Magn. Magn. Mater. 191, 277–281 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Jamalian, M., Ghasemi, A., Pourhosseini Asl, M.J.: Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd. J. Electron. Mater. 44, 2856–2861 (2015).  https://doi.org/10.1007/s11664-015-3720-x ADSCrossRefGoogle Scholar
  13. 13.
    Xie, Y., Liu, J., Hong, X., Duan, J., Le, Z., Gao, Y., Ling, Y., Huang, Y., Qin, Y., Zhong, R., Yang, F.: Synthesis and magnetic properties of BaFe11.92La(0.08-x)NdxO19(x=0, 0.02, 0.04, 0.06, 0.08) via gel-precursor self-propagating combustion process. J. Magn. Magn. Mater. 377, 172–175 (2015).  https://doi.org/10.1016/j.jmmm.2014.10.060 ADSCrossRefGoogle Scholar
  14. 14.
    Kaur, T., Kumar, S., Bhat, B.H., Want, B., Srivastava, A.K.: Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119, 1531–1540 (2015).  https://doi.org/10.1007/s00339-015-9134-z ADSCrossRefGoogle Scholar
  15. 15.
    Luo, J.: Structural and magnetic properties of Nd-doped strontium ferrite nanoparticles. Mater. Lett. 80, 162–164 (2012).  https://doi.org/10.1016/j.matlet.2012.04.107 CrossRefGoogle Scholar
  16. 16.
    Tsutaoka, T., Koga, N.: Magnetic phase transitions in substituted barium ferrites BaFe12-x(Ti0.5Co0.5)xO19(x=0-5). J. Magn. Magn. Mater. 325, 36–41 (2013).  https://doi.org/10.1016/j.jmmm.2012.07.050. ADSCrossRefGoogle Scholar
  17. 17.
    Zhu, J., Gui, Z., Ding, Y.: A simple route to lanthanum hydroxide nanorods. Mater. Lett. 62, 2373–2376 (2008).  https://doi.org/10.1016/j.matlet.2007.12.002 CrossRefGoogle Scholar
  18. 18.
    Rahman, T., Vargas, M., Ramana, C.V.: Structural characteristics , electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014).  https://doi.org/10.1016/j.jallcom.2014.07.182 CrossRefGoogle Scholar
  19. 19.
    Ajmal, M., Islam, M.U., Abbas, G., Aamir, M., Ghouri, M.I.: The in fl uence of Ga doping on structural magnetic and dielectric properties. Phys. B Condens. Matter. 526, 149 (2017).  https://doi.org/10.1016/j.physb.2017.05.044 ADSCrossRefGoogle Scholar
  20. 20.
    Ataie, A.: Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol – gel combustion method. Ceram. Int. 30, 1979–1983 (2004).  https://doi.org/10.1016/j.ceramint.2003.12.178 CrossRefGoogle Scholar
  21. 21.
    Yang, Y., Wang, F., Huang, D., Shao, J., Tang, J., Mehmood, K., Rehman, U.: Influence of Sn-Mg co-substitution on the microstructural and magnetic characteristics of M-type SrCaLa hexagonal ferrites. J. Magn. Magn. Mater. 452, 100–107 (2018).  https://doi.org/10.1016/j.jmmm.2017.12.047 ADSCrossRefGoogle Scholar
  22. 22.
    Thakur, A., Singh, R.R., Barman, P.B.: Synthesis and characterizations of Nd3+doped SrFe12O19nanoparticles. Mater. Chem. Phys. 141, 562–569 (2013).  https://doi.org/10.1016/j.matchemphys.2013.05.063 CrossRefGoogle Scholar
  23. 23.
    Chen, W., Wu, W., Mao, M., Zhou, C., Zhou, S., Li, M., Wang, Q.: Improvement of the magnetization of barium hexaferrites induced by substitution of Nd3+ions for Fe3+ions. J. Supercond. Nov. Magn. 30, 707–714 (2017).  https://doi.org/10.1007/s10948-016-3886-3. CrossRefGoogle Scholar
  24. 24.
    Ali, I., Islam, M.U., Awan, M.S., Ahmad, M.: Effects of Ga-Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol-gel auto-combustion route. J. Alloys Compd. 547, 118–125 (2013).  https://doi.org/10.1016/j.jallcom.2012.08.122 CrossRefGoogle Scholar
  25. 25.
    Iqbal, M.J., Farooq, S.: Could binary mixture of Nd – Ni ions control the electrical behavior of strontium – barium M-type hexaferrite nanoparticles ? Mater. Res. Bull. 46, 662–667 (2011).  https://doi.org/10.1016/j.materresbull.2011.01.025 CrossRefGoogle Scholar
  26. 26.
    Fu, W., Yang, H., Yu, Q., Xu, J., Pang, X., Zou, G.: Preparation and magnetic properties of SrFe12O19/SiO2nanocomposites with core-shell structure. Mater. Lett. 61, 2187–2190 (2007).  https://doi.org/10.1016/j.matlet.2006.08.059 CrossRefGoogle Scholar
  27. 27.
    Verma, V.: Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 641, 205 (2015).  https://doi.org/10.1016/j.jallcom.2015.03.260. CrossRefGoogle Scholar
  28. 28.
    Valero-Luna, C., Palomares-Sanchéz, S.A., Ruíz, F.: Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today. 266, 110–119 (2016).  https://doi.org/10.1016/j.cattod.2015.08.049 CrossRefGoogle Scholar
  29. 29.
    Ali, I., Shaheen, N., Islam, M.U., Irfan, M., Naeem, M., Iqbal, M.A., Iftikhar, A.: Study of electrical and dielectric behavior of Tb + 3 substituted Y-type hexagonal ferrite. J. Alloys Compd. 617, 863–868 (2014).  https://doi.org/10.1016/j.jallcom.2014.08.055 CrossRefGoogle Scholar
  30. 30.
    Ajmal, M., Absar, M.U.I.: Structural , electrical and dielectric properties of hexa-ferrite-polyaniline nano-composites. J. Supercond. Nov. Magn. 1375–1382 (2018).  https://doi.org/10.1007/s10948-017-4332-x CrossRefGoogle Scholar
  31. 31.
    Naeem, M., Beenish, R., Aslam, M., Fahad, M.: Synthesis , structural , magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J. Alloys Compd. 617, 437–443 (2014).  https://doi.org/10.1016/j.jallcom.2014.08.015 CrossRefGoogle Scholar
  32. 32.
    R. Manjula, V.R.K. Murthy, J. Sobhanadri, R. Manjula, V.R.K. Murthy, J. Sobhanadri: Electrical conductivity and thermoelectric power measurements of some lithium – titanium ferrites electrica ’ conductivity and thermoelectric power measurements of some lithium-titanium ferrites, 2929. 59, 2929 (2013). doi: https://doi.org/10.1063/1.336954 ADSCrossRefGoogle Scholar
  33. 33.
    A. Hojjati, N. Reza, M. Ali, Microstructural characteristics and magnetic properties of Al-substituted barium hexaferrite nanoparticles synthesized by auto-combustion sol – gel processing. 2821–2830 (2015). doi: https://doi.org/10.1007/s10948-015-3119-1.CrossRefGoogle Scholar
  34. 34.
    Wartewig, P., Krause, M.K., Esquinazi, P., Rösler, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192, 83–99 (1999).  https://doi.org/10.1016/S0304-8853(98)00382-5 ADSCrossRefGoogle Scholar
  35. 35.
    Batlle, X., Obradors, X., Rodriguezcarvajal, J., Pernet, M., Cabanas, M.V., Vallet, M.: Cation distribution and intrinsic magnetic-properties of Co-Ti-doped M-type barium ferrite. J. Appl. Phys. 70, 1614–1623 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    Šimša, Z., Lego, S., Gerber, R., Pollert, E.: Cation distribution in Co-Ti-substituted barium hexaferrites: a consistent model. J. Magn. Magn. Mater. 140–144, 2103–2104 (1995).  https://doi.org/10.1016/0304-8853(94)01393-4 ADSCrossRefGoogle Scholar
  37. 37.
    Soman, V.V., Nanoti, V.M., Kulkarni, D.K.: Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013).  https://doi.org/10.1016/j.ceramint.2012.12.089 CrossRefGoogle Scholar
  38. 38.
    Lisjak, D., Drofenik, M.: Synthesis and characterization of A-Sn-substituted (A=Zn, Ni, Co) BaM-hexaferrite powders and ceramics. J. Eur. Ceram. Soc. 24, 1841–1845 (2004).  https://doi.org/10.1016/S0955-2219(03)00445-X CrossRefGoogle Scholar
  39. 39.
    Yu, R.H., Basu, S., Zhang, Y., Parvizi-Majidi, A., Xiao, J.Q.: Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys. J. Appl. Phys. 85, 6655–6659 (1999).  https://doi.org/10.1063/1.370175 ADSCrossRefGoogle Scholar
  40. 40.
    C. Sudakar, G.N. Subbanna, T.R.N. Kutty: Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. 263, 253–268 (2003). doi: https://doi.org/10.1016/S0304-8853(02)01572-X.ADSCrossRefGoogle Scholar
  41. 41.
    Kaur, T., Kumar, S., Bhat, B.H., Want, B., Srivastava, A.K.: Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119, 1531–1540 (2015).  https://doi.org/10.1007/s00339-015-9134-z ADSCrossRefGoogle Scholar
  42. 42.
    Tehrani, M.K., Ghasemi, A., Moradi, M., Alam, R.S.: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398–8400 (2011).  https://doi.org/10.1016/j.jallcom.2011.05.091 CrossRefGoogle Scholar
  43. 43.
    Jazirehpour, M., Shams, M.H.: Microwave absorption properties of Ba–M Hexaferrite with high substitution levels of Mg–Ti in X band. J. Supercond. Nov. Magn. 30, 171–177 (2017).  https://doi.org/10.1007/s10948-016-3698-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ghulam Abbas Ashraf
    • 1
  • Lanting Zhang
    • 1
    Email author
  • Waseem Abbas
    • 1
  • Muhammad Ajmal
    • 2
  • Ghulam Murtaza
    • 3
    Email author
  • Mukhtar Ahmad
    • 4
  1. 1.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  3. 3.Centre for Advanced Studies in PhysicsGC UniversityLahorePakistan
  4. 4.Department of PhysicsCOMSATS University Islamabad, Lahore CampusLahorePakistan

Personalised recommendations