Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2871–2876 | Cite as

Structural, Electrical, and Magnetic Properties of Ferrite-Reinforced PANI Composites

  • Muhammad AjmalEmail author
  • M.U. Islam
Original Paper


A Y-type hexagonal ferrite with chemical composition CaBaCo2In0.5Fe11.5O22 was prepared by a sol-gel auto combustion technique. Y-ferrite/PANI nanocomposites were prepared by in situ polymerization of PANI with general formula CaBaCo2In0.5Fe11.5O22 (1-x) + PANI (x) (x = 0.30, 0.50, 0.8, and 1) with nomenclature CF1, CF2, CF3, and P respectively. The samples were characterized by X-ray diffraction (XRD) and electrical and magnetic measurements. X-ray diffraction revealed that Y-type ferrite was successfully prepared in a single phase form. DC resistivity increases with increasing ferrite filler in nanocomposites due to large resistive behavior of ferrite in conducting polymer matrix. The dielectric constant, dielectric loss, and AC conductivity decreases with the increase of ferrite content. The dielectric is high due to interfacial polarization at low frequency, and it is low at high frequency following Maxwell-Wagner model. The coercivity increases with the decrease of ferrite filler content whereas saturation magnetization and remanence decreases which is due to random distribution of ferrite filler particles in PANI matrix. Due to large coercivity and low values of ε′ and ε″, the present samples may be useful in recording media and electromagnetic shielding.


Ferrite-polymer nano-composite Activation energy Dielectric constant AC conductivity Magnetization 



  1. 1.
    Jiang, J., Li, L.-C., Xu, F.: Preparation, characterization and magnetic properties of PANI/La-substituted LiNi ferrite nanocomposites. Chin. J. Chem. 24(12), 1804–1809 (2006)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Huang, Y., Wang, Q., He, Q., Chen, L.: Preparation and electromagnetic properties of polyaniline (polypyrrole)-BaFe 12 O 19/Ni 0.8 Zn 0.2 Fe 2 O 4 ferrite nanocomposites. Appl. Surf. Sci. 259, 486–493 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Li, Q., Zhang, C., Wang, Y., Li, B.: Preparation and characterization of flake-like polypyrrole/SrFe 12 O 19 composites with different surface active agents. Synth. Met. 159(19), 2029–2033 (2009)CrossRefGoogle Scholar
  4. 4.
    Hosseini, S.H., Mohseni, S.H., Asadnia, A., Kerdari, H.: Synthesis and microwave absorbing properties of polyaniline/MnFe 2 O 4 nanocomposite. J. Alloys Compd. 509(14), 4682–4687 (2011)CrossRefGoogle Scholar
  5. 5.
    Jiang, J., Chen, C., Ai, L.-H., Li, L.-C., Liu, H.: Synthesis and characterization of novel ferromagnetic PPy-based nanocomposite. Mater. Lett. 63(5), 560–562 (2009)CrossRefGoogle Scholar
  6. 6.
    Sahoo, N.G., Jung, Y.C., So, H.H., Cho, J.W.: Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth. Met. 157(8), 374–379 (2007)CrossRefGoogle Scholar
  7. 7.
    Ali, I., Shakoor, A., Islam, M.U., Saeed, M., Ashiq, M.N., Awan, M.S.: Synthesis and characterization of hexagonal ferrite Co 2 Sr 2 Fe 12 O 22 with doped polypyrrole composites. Curr. Appl. Phys. 13(6), 1090–1095 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Ali, I., Islam, M.U., Ashiq, M.N., Iqbal, M.A., Karamat, N., Khan, M.A., Sadiq, I., Ijaz, S., Shakir, I.: Synthesis and characterization of hexagonal ferrite Sr 1.8 Sm 0.2 Co 2 Ni 1.50 Fe 10.50 O 22/PST thin films for high frequency application. J. Magn. Magn. Mater. 393, 352–356 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, C., Shen, Y., Wang, X., Zhang, H., Xie, A.: Synthesis of novel NiZn-ferrite/polyaniline nanocomposites and their microwave absorption properties. Mater. Sci. Semicond. Process. 16(1), 77–82 (2013)CrossRefGoogle Scholar
  10. 10.
    Nedkov, I., Petkov, A.: LiNb-substituted M-type structure Ba hexaferrites. J. Magn. Magn. Mater. 101(1–3), 165–166 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    Li, Y., Yi, R., Yan, A., Deng, L., Zhou, K., Liu, X.: Facile synthesis and properties of ZnFe 2 O 4 and ZnFe 2 O 4/polypyrrole core-shell nanoparticles. Solid State Sci. 11(8), 1319–1324 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Moučka, R., Mravčáková, M., Vilčáková, J., Omastová, M., Sáha, P.: Electromagnetic absorption efficiency of polypropylene/montmorillonite/polypyrrole nanocomposites. Mater. Des. 32(4), 2006–2011 (2011)CrossRefGoogle Scholar
  13. 13.
    Chen, J., Zhang, Z.: Radiation-induced polymerization of methyl methacrylate in microemulsion with high monomer content. Eur. Polym. J. 43(4), 1188–1194 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ansari, F., Sobhani, A., Salavati-Niasari, M.: Facile synthesis, characterization and magnetic property of CuFe 12 O 19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Ding, J., Miao, W.F., McCormick, P.G., Street, R.: High-coercivity ferrite magnets prepared by mechanical alloying. J. Alloys Compd. 281(1), 32–36 (1998)CrossRefGoogle Scholar
  16. 16.
    Tsutaoka, T.: Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 93(5), 2789–2796 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Snoek, J.L.: Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica. 14(4), 207–217 (1948)ADSCrossRefGoogle Scholar
  18. 18.
    Aphesteguy, J.C., Jacobo, S.E.: Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties. J. Mater. Sci. 42(17), 7062–7068 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Vilela, S.O., Soto-Oviedo, M.A., Albers, A.P.F., Faez, R.: Polyaniline and mineral clay-based conductive composites. Mater. Res. 10(3), 297–300 (2007)CrossRefGoogle Scholar
  20. 20.
    Chaudhari, H.K., Kelkar, D.S.: X-ray diffraction study of doped polyaniline. J. Appl. Polym. Sci. 62(1), 15–18 (1996)CrossRefGoogle Scholar
  21. 21.
    Khursheed, T., Islam, M.U., Asif Iqbal, M., Ali, I., Shakoor, A., Awan, M.S., Iftikhar, A., Khan, M.A., Ashiq, M.N.: Synthesis and characterization of polyaniline-hexaferrite composites. J. Magn. Magn. Mater. 393, 8–14 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    BD Cullity, Elements of X-ray diffraction, Addison-Wesley, Reading (1978)Google Scholar
  23. 23.
    Elahi, A., Ahmad, M., Ali, I., Rana, M.U.: Preparation and properties of sol–gel synthesized Mg-substituted Ni 2 Y hexagonal ferrites. Ceram. Int. 39(2), 983–990 (2013)CrossRefGoogle Scholar
  24. 24.
    Ahmad, M., Ali, Q., Ali, I., Ahmad, I., Azhar Khan, M., Akhtar, M.N., Murtaza, G., Rana, M.U.: Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites. J. Alloys Compd. 580, 23–28 (2013)CrossRefGoogle Scholar
  25. 25.
    Ajmal, M., Islam, M.U., Ali, A.: Structural, electrical and dielectric properties of Hexa-ferrite-polyaniline nano-composites. J. Supercond. Nov. Magn. 31, 1375-1382 (2018). CrossRefGoogle Scholar
  26. 26.
    Choudhury, A.: Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem. 138(1), 318–325 (2009)CrossRefGoogle Scholar
  27. 27.
    Amaral, F., Rubinger, C.P.L., Henry, F., Costa, L.C., Valente, M.A., Barros-Timmons, A.: Dielectric properties of polystyrene–CCTO composite. J. Non-Cryst. Solids. 354(47), 5321–5322 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Ding, J., Liu, X.Y., Wang, J., Shi, Y.: Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Lett. 44(1), 19–22 (2000)CrossRefGoogle Scholar
  29. 29.
    Singh, A.K., Goel, T.C., Mendiratta, R.G., Thakur, O.P., Prakash, C.: Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(10), 6626–6629 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Ajmal, M., Islam, M.U.: Structural, optical and dielectric properties of polyaniline-Ni o. 5 Zn o. 5 Fe 2 O 4 nano-composites. Phys. B Condens. Matter. 521, 355 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Dıaz-Guillén, J.A., Dıaz-Guillén, M.R., Padmasree, K.P., Fuentes, A.F., Santamarıa, J., León, C.: High ionic conductivity in the pyrochlore-type Gd2-yLayZr2O7 solid solution (0 B y B 1). Solid State Ionics. 179, 2160–2164 (2008)CrossRefGoogle Scholar
  32. 32.
    Ajmal, M., Islam, M.U., Ashraf, G.A., Nazir, M.A., Ghouri, M.I.: The influence of Ga doping on structural magnetic and dielectric properties of NiCr 0.2 Fe 1.8 O 4 spinel ferrite. Phys. B Condens. Matter. 526, 149 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Ahmad, M., Grössinger, R., Kriegisch, M., Kubel, F., Rana, M.U.: Magnetic and microwave attenuation behavior of Al-substituted Co 2 W hexaferrites synthesized by sol-gel autocombustion process. Curr. Appl. Phys. 12(6), 1413–1420 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations