Magnetoresistance Hysteresis Evolution in the Granular Y–Ba–Cu–O High-Temperature Superconductor in a Wide Temperature Range

  • S. V. SemenovEmail author
  • D. A. Balaev
Original Paper


The temperature evolution of the magnetoresistance hysteresis in the granular YBa2Cu3O7-δ high-temperature (TC ≈ 92 K) superconductor has been investigated. The measurements have been performed in the high-temperature region (78–90 K) and at the liquid helium temperature (4.2 K). The results obtained have been analyzed using the developed model of the behavior of transport properties of a granular high-temperature superconductor in an external magnetic field. Within the discussed model, the dissipation of the grain boundary subsystem is determined by the intergrain spacing-averaged effective field Beff, which is a superposition of external field H and the field induced by the magnetic moments of superconducting grains. Such a consideration yields the expression Beff(H) = H − 4πM(H) α for the effective field in the intergrain medium, where M(H) is the experimental hysteretic dependence of magnetization and α is the parameter of magnetic flux crowding in the intergrain medium. Here, the magnetoresistance is assumed to be proportional to the absolute value of the effective field: R(H) ~ |Beff(H)|. Analysis of the experimental R(H) and M(H) dependences obtained under the same conditions for the investigated high-temperature superconductor sample showed that in the high-temperature region this parameter is α ≈ 25. At the low temperature (4.2 K), we may state that the degree of flux crowding increases and the estimated α value is ~ 50. The estimates made are indicative of the strong effect of flux compression in the intergrain medium on the magnetotransport properties of the investigated granular high-temperature superconductor system. Possible reasons for a discrepancy between the developed model concepts and experimentally observed low-temperature R(H) hysteresis are analyzed.


Granular HTSC YBCO Magnetoresistance hysteresis Effective field Intergrain medium Magnetic flux compression 


Funding Information

The work was supported by the Russian Science Foundation (Grant No. 17-72-10050).


  1. 1.
    Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C.C., Chi, J., Oprysko, M.M., Scheuermann, M.: Direct measurement of the superconducting properties of single grain boundaries in Y1Ba2Cu3O7−δ. Phys. Rev. Lett. 60(16), 1653 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    De Vries, J.W.C., Stollman, G.M., Gijs, M.A.M.: Analysis of the critical current density in high-Tc superconducting films. Physica C. 157, 406 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Petrov, M.I., Balaev, D.A., Krustalev, B.P., Aleksandrov, K.S.: The effect of heat treatment on the transport properties of the polycrystalline HTSC. Physica C. 235-240, 3043 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Delin, K.A., Kleinsasser, A.W.: Stationary properties of high-critical-temperature proximity effect Josephson junctions. Supercond. Sci. Technol. 9, 227 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Petrov, M.I., Balaev, D.A., Gokhfeld, D.M.: Andreev reflection and experimental temperature dependences of the critical current in heterogeneous high-temperature superconductors (polycrystals and related composites). Phys. Solid State. 49, 619 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Dubson, M.A., Herbert, S.T., Calabrese, J.J., Harris, D.C., Patton, B.R., Garland, J.C.: Non-Ohmic dissipative regime in the superconducting transition of polycrystalline Y1Ba2Cu3Ox. Phys. Rev. Lett. 60, 1061 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Jung, J., Mohamed, M.K., Cheng, S.C., Franck, J.P.: Flux motion, proximity effect, and critical current density in YBa2Cu3O7−δ/silver composites. Phys. Rev. B. 42(N10), 6181 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Ji, L., Rzchowski, M.S., Anand, N., Tinkham, M.: Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors. Phys. Rev. B. 47, 470 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Sun, S., Zhao, Y., Pan, G., Yu, D., Zhang, H., Chen, Z., Qian, Y., Kuan, W., Zhang, Q.: The behaviour of negative magnetoresistance and hysteresis in YBa2Cu3O7-δ. Europhys. Lett. 6(4), 359 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    Qian, Y.J., Tang, Z.M., Chen, K.Y., Zhou, B., Qiu, J.W., Miao, B.C., Cai, Y.M.: Transport hysteresis of the oxide superconductor Y1Ba2Cu3O7−x in applied fields. Phys. Rev. B. 39, 4701 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    Celasco, M., Masoero, A., Mazzetti, P., Stepanescu, A.: Evidence of current-noise hysteresis in superconducting YBa2Cu3O7−δ specimens in a magnetic field. Phys. Rev. B. 44, 5366 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Kuz’michev, N.D.: Critical state of Josephson medium. JETP Lett. 74, 262 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Daghero, D., Mazzetti, P., Stepanescu, A., Tura, P., Masoero, A.: Electrical anisotropy in high-T c granular superconductors in a magnetic field. Phys. Rev. B. 66(13), 11478 (2002)Google Scholar
  14. 14.
    Derevyanko, V.V., Sukhareva, T.V., Finkel, V.A.: Magnetoresistance hysteresis of granular YBa2Cu3O7−δ high-temperature superconductor in weak magnetic fields. Tech. Phys. 53, 321 (2008)CrossRefGoogle Scholar
  15. 15.
    Shaikhutdinov, K.A., Balaev, D.A., Popkov, S.I., Petrov, M.I.: Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors. Phys. Solid State. 51, 1105 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Sukhareva, T.V., Finkel, V.A.: Hysteresis of the magnetoresistance of granular HTSC YBa2Cu3O7−δ in weak fields. Phys. Solid State. 50, 1001 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Sukhareva, T.V., Finkel, V.A.: Phase transition in the vortex structure of granular YBa2Cu3O7−δ HTSCs in weak magnetic fields. JETP. 107, 787 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Balaev, D.A., Popkov, S.I., Shaikhutdinov, K.A., Petrov, M.I., Gokhfeld, D.M.: Magnetoresistance of porous polycrystalline HTSC: effect of the transport current on magnetic flux compression in intergranular medium. Phys. Solid State. 56, 1542 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Balaev, D.A., Semenov, S.V., Petrov, M.I.: Correlation between magnetoresistance and magnetization hysteresis in a granular high-T C superconductor: impact of flux compression in the intergrain medium. J. Supercond. Nov. Magn. 27, 1425 (2014)CrossRefGoogle Scholar
  20. 20.
    Evetts, J.E., Glowacki, B.A.: Relation of critical current irreversibility to trapped flux and microstructure in polycrystalline YBa2Cu3O7. Cryogenics. 28, 641 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Altshuler, E., Musa, J., Barroso, J., Papa, A.R.R., Venegas, V.: Generation of Jc (He) hysteresis curves for granular YBa2Cu3O7-δ superconductors. Cryogenics. 33, 308–313 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    Mune, P., Govea-Alcaide, E., Jardim, R.F.: Magnetic hysteresis of the critical current density of polycrystalline (Bi–Pb)–Sr–Ca–Cu–O superconductors: a fingerprint of the intragranular and intergranular flux trapping. Physica C. 354, 275–278 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Mune, P., Fonseca, F.C., Muccillo, R., Jardim, R.F.: Magnetic hysteresis of the magnetoresistance and the critical current density in polycrystalline YBa2Cu3O7−δ–Ag superconductors. Physica C. 390, 363–373 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Balaev, D.A., Gokhfeld, D.M., Popkov, S.I., Shaykhutdinov, K.A., Petrov, M.I.: Hysteretic behavior of the magnetoresistance and the critical current of bulk Y3/4Lu1/4Ba2Cu3O7+ CuO composites in a magnetic field. Physica C. 460–462, 1307–1308 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Balaev, D.A., Dubrovskii, A.A., Popkov, S.I., Gokhfeld, D.M., Semenov, S.V., Shaykhutdinov, K.A., Petrov, M.I.: Specific features in the hysteretic behavior of the magnetoresistance of granular high-temperature superconductors. Phys. Solid State. 54(11), 2155 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Balaev, D.A., Bykov, A.A., Semenov, S.V., Popkov, S.I., Dubrovskii, A.A., Shaikhutdinov, K.A., Petrov, M.I.: General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems. Phys. Solid State. 53(5), 922 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Lopez, D., De la Cruz, F.: Anisotropic energy dissipation in high-T c ceramic superconductors: local-field effects. Phys. Rev. B. 43(13), 11478 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    Kiliç, A., Kiliç, K., Senoussi, S., Demir, K.: Influence of an external magnetic field on the current–voltage characteristics and transport critical current density. Physica C. 294, 203–216 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Balaev, D.A., Prus, A.G., Shaykhutdinov, K.A., Gokhfeld, D.M., Petrov, M.I.: Study of dependence upon the magnetic field and transport current of the magnetoresistive effect in YBCO-based bulk composites. Supercond. Sci. Technol. 20, 495 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Balaev, D.A., Popkov, S.I., Sabitova, E.I., Semenov, S.V., Shaykhutdinov, K.A., Shabanov, A.V., Petrov, M.I.: Compression of a magnetic flux in the intergrain medium of a YBa2Cu3O7 granular superconductor from magnetic and magnetoresistive measurements. J. Appl. Phys. 110, 093918 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Balaev, D.A., Dubrovskii, A.A., Popkov, S.I., Shaikhutdinov, K.A., Petrov, M.I.: Relaxation of the remanent resistance of granular HTSC Y-Ba-Cu-O+ CuO composites after magnetic field treatment. Phys. Solid State. 50, 1014–1021 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Balaev, D.A., Dubrovskii, A.A., Shaikhutdinov, K.A., Popkov, S.I., Gokhfeld, D.M., Gokhfeld, Y.S., Petrov, M.I.: Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: the universal nature of the width of the magnetoresistance hysteresis loop. JETP. 108, 241 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Balaev, D.A., Semenov, S.V., Petrov, M.I.: Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field. Phys. Solid State. 55, 2422 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Balaev, D.A., Semenov, S.V., Pochekutov, M.A.: Anisotropy of the magnetoresistance hysteresis in the granular superconductor Y-Ba-Cu-O at different magnetic-field and transport-current orientations. J. Appl. Phys. 122, 123902 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Semenov, S.V., Balaev, D.A.: Temperature behavior of the magnetoresistance hysteresis in a granular high-temperature superconductor: magnetic flux compression in the intergrain medium. Physica C. 550, 19 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Mitin, A.V.: Effect of vortex dynamics on the transport properties of granular YBa2Cu3O7−δ with reduced Josephson junctions. Physica C. 235–240, 3311 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Gaffney, C., Petersen, H., Bednar, R.: Phase-slip analysis of the non-Ohmic transition in granular YBa2Cu3O6.9. Phys. Rev. B. 48, 3388 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Gamchi, H.S., Russell, G.J., Taylor, K.N.R.: Resistive transition for YBa2Cu3O7−δ-Y2BaCuO5 composites: influence of a magnetic field. Phys. Rev. B. 50, 12950 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Balaev, D.A., Popkov, S.I., Semenov, S.V., Bykov, A.A., Sabitova, E.I., Dubrovskiy, A.A., Shaikhutdinov, K.A., Petrov, M.I.: Contributions from inter-grain boundaries to the magneto-resistive effect in polycrystalline high-T C superconductors. The underlying reason of different behavior for YBCO and BSCCO systems. J. Supercond. Nov. Magn. 24, 2129 (2011)CrossRefGoogle Scholar
  40. 40.
    Prester, M., Babić, E., Stubičar, M., Nozar, P.: Dissipation in a weak-link-limited superconductor as a problem of percolation theory. Phys. Rev. B. 49(N10), 6967 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    Derevyanko, V.V., Sukhareva, T.V., Finkel, V.A., Shakhov, Y.N.: Effect of temperature and magnetic field on the evolution of a vortex structure of the granular YBa2Cu3O7−δ high-temperature superconductor. Phys. Solid State. 56(N4), 649 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Andrzejewski, B., Guilmeau, E., Simon, C.: Modelling of the magnetic behaviour of random granular superconductors by the single junction model. Supercond. Sci. Technol. 14, 904–909 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    Dos Santos, C.A.M., Da Luz, M.S., Ferreira, B., Machado, A.J.S.: On the transport properties in granular or weakly coupled superconductors. Physica C. 391, 345 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Balaev, D.A., Popkov, S.I., Semenov, S.V., Bykov, A.A., Shaykhutdinov, K.A., Gokhfeld, D.M., Petrov, M.I.: Magnetoresistance hysteresis of bulk textured Bi1. 8Pb0. 3Sr1. 9Ca2Cu3Ox+ Ag ceramics and its anisotropy. Physica C. 470, 61–67 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31 (1964)ADSCrossRefGoogle Scholar
  46. 46.
    Senoussi, S.: Review of the critical current densities and magnetic irreversibilities in high Tc superconductors. J. Phys. III France. 2, 1041 (1992)CrossRefGoogle Scholar
  47. 47.
    Chen, D.X., Cross, R.W., Sanchez, A.: Effects of critical current density, equilibrium magnetization and surface barrier on magnetization of high temperature superconductors. Cryogenics. 33, 695 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Gokhfeld, D.M.: An extended critical state model: asymmetric magnetization loops and field dependence of the critical current of superconductors. Phys. Solid State. 56, 2380 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Semenov, S.V., Balaev, D.A., Pochekutov, M.A., Velikanov, D.A.: Anisotropy of the magnetoresistive properties of granular high-temperature superconductors resulting from magnetic flux compression in the intergrain medium. Phys. Solid State. 59, 1291 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    Balaev, D.A., Gokhfeld, D.M., Dubrovskii, A.A., Popkov, S.I., Shaikhutdinov, K.A., Petrov, M.I.: Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO+ CuO composites. JETP. 105, 1174 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Altinkok, A., Kiliç, K., Olutaş, M., Kiliç, A.: Magnetovoltage measurements and hysteresis effects in polycrystalline superconducting Y1Ba2Cu3O7−x/Ag in weak magnetic fields. J. Supercond. Nov. Magn. 26, 3085 (2013)CrossRefGoogle Scholar
  52. 52.
    Barone, A., Paterno, J.: Physics and Application of the Josephson Effect. Wiley, New York (1982)CrossRefGoogle Scholar
  53. 53.
    Likharev, K.K.: Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979)ADSCrossRefGoogle Scholar
  54. 54.
    Yeshurun, Y., Malozemoff, A.P., Shaulov, A.: Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    Semenov, S.V., Balaev, A.D., Balaev, D.A.: Dissipation in granular high-temperature superconductors: new approach to describing the magnetoresistance hysteresis and the resistive transition in external magnetic fields. J. Appl. Phys. 125, 033903 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia

Personalised recommendations