Optical Properties of Planar and Annular Ternary Superconducting Photonic Crystals in Near-Zero-Permittivity Operation Range

  • K. P. Sreejith
  • Vincent MathewEmail author
Original Paper


Optical properties of ternary superconducting planar/annular photonic crystals composed of a high-temperature superconductor and two dielectrics were theoretically investigated based on transfer matrix methods in Cartesian and cylindrical coordinates. Electrodynamics of superconductor were modelled using two-fluid model. It is of interest to observe that, for a planar structure, there exists an additional high reflectance band termed as superpolariton gap near the superconducting threshold wavelength for the TM wave at oblique incidences and some reflection dips also were found in the TM reflectance. However, the superpolariton gap and reflection dips were seen for an annular geometry at higher order azimuthal number. For an annular structure, the size of superpolariton gap can be controlled by simply adjusting the starting radius. Moreover, the superpolariton gap in both structures strongly depends on the operating temperature, different combinations of dielectric refractive indices, and thicknesses of dielectric materials.


Photonic crystal Annular Superconductor Superpolariton 



  1. 1.
    Yablonovitch, E.: Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    John, S.: Phy. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic crystals. Princeton University Press, New Jersey (1995)zbMATHGoogle Scholar
  4. 4.
    Srivastava, S.K., Ojha, S.P.: Broadband optical reflector based on Si/SiO2 one-dimensional graded photonic crystal structure. J. Mod. Opt. 56, 33–40 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Sreejith, K.P., Mathew, V.: Multichannel Filtering Properties of a One Dimensional Photonic Crystal Composed of Semiconductor Photonic Quantum Well Defect. Silicon 1–6 (2018)Google Scholar
  6. 6.
    Painter, O., Lee, R.K., Scherer, A., Yariv, A., O’brien, J.D., Dapkus, P.D., Kim, I.: Two-dimensional photonic band-gap defect mode laser. Science. 284, 1819–1821 (1999)CrossRefGoogle Scholar
  7. 7.
    Fink, Y., Winn, J.N., Fan, S., Chen, C., Michel, J., Joannopoulos, J.D., Thomas, E.L.: A dielectric omnidirectional reflector. Science. 282, 1679–1682 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Christ, A., Zentgraf, T., Kuhl, J., Tikhodeev, S.G., Gippius, N.A., Giessen, H.: Optical properties of planar metallic photonic crystal structures: Experiment and theory. Phys. Rev. B. 70, 125113 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Aly, A.H., Elsayed, H.A., Hamdy, H.S.: The optical transmission characteristics in metallic photonic crystals. Mater. Chem. Phys. 124, 856–860 (2010)CrossRefGoogle Scholar
  10. 10.
    Tian, H., Zi, J.: One-dimensional tunable photonic crystals by means of external magnetic fields. Opt. Commun. 252, 321–328 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Ooi, C.H.R., Yeung, T C A u: Polariton gap in a superconductor–dielectric superlattice. Phys. Lett. A 259, 413–419 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Ooi, C.H.R., Yeung, T.C.A., Kam, C.H., Lim, T.K.: Photonic band gap in a superconductor-dielectric superlattice. Phys. Rev. B 61, 5920 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Aly, A.H., Ryu, S.-W., Hsu, H.-T., Wu, C.-J.: THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Mater. Chem. Phys. 113, 382–384 (2009)CrossRefGoogle Scholar
  14. 14.
    Aly, A.H.: The transmittance of two types of one-dimensional periodic structures. Mater. Chem. Phys. 115, 391–394 (2009)CrossRefGoogle Scholar
  15. 15.
    Aly, A.H., Mohamed, D., Elsayed, H.A., Mehaney, A.: Fano resonance by means of the one-dimensional superconductor photonic crystals. J. Supercond. Nov. Magn. 31, 3827–3833 (2018)CrossRefGoogle Scholar
  16. 16.
    Aly, A.H., Sabra, W., Elsayed, H.A.: Dielectric and superconducting photonic crystals. J. Supercond. Nov. Magn. 26, 553–560 (2013)CrossRefGoogle Scholar
  17. 17.
    Aly, A.H., Mohamed, D.: BSCCO/SrTiO 3 one dimensional superconducting photonic crystal for many applications. J. Supercond. Nov. Magn. 28, 1699–1703 (2015)CrossRefGoogle Scholar
  18. 18.
    Wu, C.-J., Chen, M.-S., Yang, T.-J.: Photonic band structure for a superconductor-dielectric superlattice. Physica C: Superconductivity 432, 133–139 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Aly, A.H., Hsu, H.-T., Yang, T.-J., Wu, C.-J., Hwangbo, C.K.: Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range. J. Appl. Phys. 105, 083917 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Wu, C.-J., Liu, C.-L., Yang, T.-J.: Investigation of photonic band structure in a one-dimensional superconducting photonic crystal. JOSA B. 26, 2089–2094 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, M.-S., Wu, C.-J., Yang, T.-J.: Investigation of optical properties in near-zero-permittivity operation range for a superconducting photonic crystal. Appl. Phys. A 104, 913 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, C.-J., Wang, Z.-H., Yang, T.-J.: Angle-and thickness-dependent photonic band structure in a superconducting photonic crystal. J. Supercond. Nov. Magn. 23, 1395–1399 (2010)CrossRefGoogle Scholar
  23. 23.
    Chen, M.-S., Wu, C.-J., Yang, T.-J.: Optical properties of a superconducting annular periodic multilayer structure. Solid State Commun. 149, 1888–1893 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Srivastava, S.K, Aghajamali, A.: Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials. Phys. B Condens. Matter 489, 67–72 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Hu, C.-A., Wu, C.-J., Yang, T.-J., Yang, S.-L.: Analysis of optical properties in cylindrical dielectric photonic crystal. Opt. Commun. 291, 424–434 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    El-Naggar, S.A.: Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials. Eur. Phys. J. D. 71, 11 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Born, M., Wolf, E.: Principles of Optics. Cambridge, London (1999)CrossRefGoogle Scholar
  28. 28.
    Kaliteevski, M.A., Abram, R.A., Nikolaev, V.V., Sokolovski, G.S.: Bragg reflectors for cylindrical waves. J. Mod. Opt. 46, 875–890 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Green, W.M.J., Scheuer, J., DeRose, G., Yariv, Y.: Vertically emitting annular Bragg lasers using polymer epitaxial transfer. Appl. Phys. Lett. 84, 3669–3671 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Scheuer, J., Green, W.M.J., DeRose, G., Yariv, Y.: Low threshold two-dimensional annular Bragg lasers. Opt. Lett. 29, 2641–2643 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Dai, X., Xiang, Y., Wen, S.: Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor. Prog. Electromagn. Res. 120, 17–34 (2011)CrossRefGoogle Scholar
  32. 32.
    Sreejith, K.P., D’souza, N.M., Mathew, V.: Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal. Physica C: Superconductivity and its Applications. 540, 44–47 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, H.-F., Liu, S.-B., Kong, X.-K., Bian, B.-R., Dai, Y.: Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals. Solid State Commun. 152, 2113–2119 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Yeh, P.: Optical waves in layered media. Wiley, Singapore (1991)Google Scholar
  35. 35.
    Tinkham, M.: Introduction to superconductivity, 2nd edn. McGraw-Hill, New York (1996)Google Scholar
  36. 36.
    van Duzer, T., Turner, C.W.: Principles of superconductive devices and circuits. Edward Arnold, London (1981)Google Scholar
  37. 37.
    Poole, C.P. Jr, Farach, H.A., Creswick, R.J.: Superconductivity. Academic Press, San Diego (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCentral University of Kerala, Tejaswini Hills, PeriyeKasaragodIndia

Personalised recommendations