Advertisement

Theoretical Modeling of the Non-equilibrium Amorphous State in 1T-TaS2

  • Jaka VodebEmail author
  • Viktor V. Kabanov
  • Yaroslav A. Gerasimenko
  • Igor Vaskivskyi
  • Jan Ravnik
  • Dragan Mihailovic
Original Paper

Abstract

1T-TaS2 is known for it’s remarkably complex phase diagram and it’s unique long-lived metastable hidden (H) state. Recently, a novel metastable state has been discovered using higher fluences for photoexcitation than in the case of the H state. The state has been dubbed as amorphous (A) due to it’s similarity to glass. Expanding on the work of Brazovskii and Karpov, we show that the A state can be successfully modeled with classical interacting polarons on a two dimensional hexagonal lattice. We have found that the polaron configuration of the A state corresponds to a frustrated screened Coulomb system, where there is no order-disorder phase transition.

Keywords

Charge density waves Polarons Lattice gas model Monte Carlo simulations 

Notes

Acknowledgements

We wish to thank Tomaz Mertelj for the useful discussions. The work was supported by ERC-2012-ADG20120216 “Trajectory” and the Slovenian Research Agency (program P1-0040 and young researcher P0-8333).

References

  1. 1.
    Spijkerman, A., de Boer, J.L., Meetsma, A., Wiegers, G.A., van Smaalen, S.: X-ray crystal-structure refinement of the nearly commensurate phase of 1 t- tas 2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56(21), 13757 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Fazekas, P., Tosatti, E.: Electrical, structural and magnetic properties of pure and doped 1t-tas2. Philos. Mag. B 39(3), 229 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    Rossnagel, K., Smith, N.: Spin-orbit coupling in the band structure of reconstructed 1 t- tas 2. Phys. Rev. B 73(7), 073106 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Withers, R., Wilson, J.: An examination of the formation and characteristics of charge-density waves in inorganic materials with special reference to the two-and one-dimensional transition-metal chalcogenides. J. Phys. C Solid State Phys. 19(25), 4809 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Sipos, B., Kusmartseva, A.F., Akrap, A., Berger, H., Forró, L., Tutiš, E.: From mott state to superconductivity in 1T-TaS2. Nat. Mater. 7(12), 960 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Thompson, A., Gamble, R., Revelli, J.: Transitions between semiconducting and metallic phases in 1-t tas2. Solid State Commun. 9(13), 981 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    Klanjšek, M. , Zorko, A. , Mravlje, J., Jagličić, Z., Biswas, P.K., Prelovšek, P., Mihailovic, D., Arčon, D., et al.: A high-temperature quantum spin liquid with polaron spins. Nature Physics (2017)Google Scholar
  8. 8.
    Brazovskii, S.: Modeling of evolution of a complex electronic system to an ordered hidden state: Application to optical quench in 1T-TaS2. J. Supercond. Nov. Magn. 28(4), 1349 (2015)CrossRefGoogle Scholar
  9. 9.
    Stojchevska, L., Vaskivskyi, I., Mertelj, T., Kusar, P., Svetin, D., Brazovskii, S., Mihailovic, D.: Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344(6180), 177 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Karpov, P., Brazovskii, S.: Modeling of networks and globules of charged domain walls observed in pump and pulse induced states. Sci. Rep. 8(1), 4043 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Wellein, G., Fehske, H.: Polaron band formation in the holstein model. Phys. Rev. B 56(8), 4513 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Bonča, J., Trugman, S., Batistić, I.: Holstein polaron. Phys. Rev. B 60(3), 1633 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    De Raedt, H., Lagendijk, A.: Numerical calculation of path integrals: the small-polaron model. Phys. Rev. B 27(10), 6097 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    Davydov, A.S.: Solitons in molecular systems. Phys. Scr. 20(3–4), 387 (1979)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jeckelmann, E., White, S.R.: Density-matrix renormalization-group study of the polaron problem in the holstein model. Phys. Rev. B 57(11), 6376 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Li, X., Tully, J.C., Schlegel, H.B., Frisch, M.J.: Ab initio ehrenfest dynamics. J. Chem. Phys. 123 (8), 084106 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Donati, G., Lingerfelt, D.B., Petrone, A., Rega, N., Li, X.: watching polaron pair formation from first-principles electron–nuclear dynamics. J. Phys. Chem. A 120(37), 7255 (2016)CrossRefGoogle Scholar
  18. 18.
    Polkehn, M., Eisenbrandt, P., Tamura, H., Burghardt, I.: Quantum dynamical studies of ultrafast charge separation in nanostructured organic polymer materials: Effects of vibronic interactions and molecular packing. Int. J. Quantum Chem. 118(1), e25502 (2018)CrossRefGoogle Scholar
  19. 19.
    Beck, M.H., Jäckle, A., Worth, G., Meyer, H.D.: The multiconfiguration time-dependent hartree (mctdh) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324(1), 1 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent hartree theory. J. Chem. Phys. 119(3), 1289 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Tanimura, Y., Kubo, R.: Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J. Physical Soc. Japan 58(1), 101 (1989)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Chen, L., Zhao, Y., Tanimura, Y.: Dynamics of a one-dimensional holstein polaron with the hierarchical equations of motion approach. J. Phys. Chem. Lett. 6(15), 3110 (2015)CrossRefGoogle Scholar
  23. 23.
    Petrone, A., Lingerfelt, D.B., Williams-Young, D.B., Li, X.: Ab initio transient vibrational spectral analysis. J. Phys. Chem. Lett. 7(22), 4501 (2016)CrossRefGoogle Scholar
  24. 24.
    Petrone, A., Goings, J.J., Li, X.: Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies. Phys. Rev. B 94(16), 165402 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Stein, J.L., Steimle, M.I., Terban, M.W., Petrone, A., Billinge, S.J., Li, X., Cossairt, B.M.: Cation exchange induced transformation of inp magic-sized clusters. Chem. Mater. 29(18), 7984 (2017)CrossRefGoogle Scholar
  26. 26.
    Gerasimenko, Y., Vaskivskyi, I., Ravnik, J., Vodeb, J., Kabanov, V.V., Mihailovic, D.: Ultrafast jamming of electrons into an amorphous entangled state. arXiv:1803.00255 (2018)
  27. 27.
    Rossnagel, K.: On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23(21), 213001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Alexandrov, A.S., Mott, N.F.: Polarons & Bipolarons. World Scientific, Singapore (1995)Google Scholar
  29. 29.
  30. 30.
    Lee, S.J., Kim, B., Lee, J.: Infinite ground state degeneracy and glassy dynamics in the frustrated xy model and lattice coulomb gas with f = 16. Physica A: Statistical Mechanics and its Applications 315(1), 314 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Rademaker, L., Pramudya, Y., Zaanen, J., Dobrosavljević, V.: Influence of long-range interactions on charge ordering phenomena on a square lattice. Phys. Rev. E 88(3), 032121 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Pokrovsky, V., Uimin, G.: On the properties of monolayers of adsorbed atoms. J. Phys. C Solid State Phys. 11(16), 3535 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jozef Stefan InstituteLjubljanaSlovenia
  2. 2.CENN NanocenterLjubljanaSlovenia
  3. 3.Department of Physics, Faculty for Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations