Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3097–3102 | Cite as

Propagation of Spin Waves Through an Interface Between Ferromagnetic and Antiferromagnetic Materials

  • Oksana BuselEmail author
  • Oksana Gorobets
  • Yuri Gorobets
Original Paper


Boundary conditions for order parameters at an interface between ferromagnetic (FM) and two-sublattice antiferromagnetic (AFM) materials are obtained in the continuous medium approximation similarly to the approach which allows one to take into account the finite thickness of the FM/FM interface, which is much less than spin wavelength. Three order parameters are considered inside an interface of finite thickness with the magnetization M of FM, magnetizations of both sublattices M1 and M2 of AFM. The uniform and non-uniform exchange between all order parameters are taken into account to the interface energy. Using these boundary conditions, the excitation of a surface evanescent spin wave is considered in AFM when the spin wave in FM falls onto this interface. The coefficients and the phases of transmission and reflection of spin wave through the FM/AFM interface are derived.


Ferromagnet Antiferromagnet Finite thickness interface Boundary conditions Evanescent spin wave 


Funding Information

This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie GA No. 644348 (MagIC).


  1. 1.
    Busel, O., et al.: Boundary conditions at the interface of finite thickness between ferromagnetic and antiferromagnetic materials. J. Magn. Magn. Mater. 462, 226 (2018). CrossRefGoogle Scholar
  2. 2.
    Kruglyak, V.V., et al.: Magnetization boundary conditions at a ferromagnetic interface of finite thickness. J. Phys. Condens. Matter. 26(40), 406001 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Cheng, R., et al.: Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113(5), 057601 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Železǹy, J., et al.: Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 15(157201), 113 (2014)Google Scholar
  5. 5.
    Kampfrath, T., et al.: Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics. 5, 31–34 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Tveten, E., et al.: Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Basset, J., et al.: Toward antiferromagnetic metal spintronics. Proc. SPIE. 7036, 703605 (2008)CrossRefGoogle Scholar
  8. 8.
    MacDonald, A.H., Tsoi, M.: Antiferromagnetic metal spintronics. Trans. R. Soc. A. 369, 3098–3114 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    He, X., et al.: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Sando, D., et al.: BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter. 473201(23pp), 26 (2014)Google Scholar
  11. 11.
    Zarzuela, R., Tserkovnyak, Y.: Antiferromagnetic textures and dynamics on the surface of a heavy metal. Phys. Rev. B. 95, 180402(R) (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Shiino, T., et al.: Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Dasgupta, S., et al.: Gauge fields and related forces in antiferromagnetic soliton physics. Phys. Rev. B. 220407(R), 95 (2017)Google Scholar
  14. 14.
    Yüksel, Y.: Exchange bias mechanism in FM/FM/AF spin valve systems in the presence of random unidirectional anisotropy field at the AF interface: the role played by the interface roughness due to randomness. Phys. Lett. A. 382, 1298 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Nolting, F., et al.: Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature. 405, 767 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Ohldag, H., et al.: Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 017203 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Valev, V.K., et al.: Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys. Rev. Lett. 96, 067206 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Šmejkal, L., et al.: Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018)CrossRefGoogle Scholar
  19. 19.
    Khymyn, R., et al.: Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B. 93(22), 224421 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Pirro, P., et al.: Interference of coherent spin waves in micron-sized ferromagnetic waveguides. Phys. Status Solidi B. 248(10), 2404–2408 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Mailyan, M., et al.: Goos-Hänchen shift of a spin-wave beam at the interface between two ferromagnets. IEEE. (2017). CrossRefGoogle Scholar
  22. 22.
    Heide, M., Bihlmayer, G. and Blügel, S.: Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403(R) (2008)Google Scholar
  23. 23.
    Hrabec, A., et al.: Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Phys. Rev. B. 020402(R), 90 (2014)Google Scholar
  24. 24.
    Rohart, S., Thiaville, A.: Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B. 88, 184422 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Cortes-Ortuno, D., Landeros, P.: Influence of the Dzyaloshinskii–Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter. 25, 156001 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Bogdanov, A.N., Yablonsky, D.A.: Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP. 95, 178 (1989)Google Scholar
  27. 27.
    Gruszecki, P., et al.: Goos-H¨anchen shift of a spin-wave beam transmitted through anisotropic interface between two ferromagnets. Phys. Rev. B. 95, 014421 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Akhiezer, A., Bar'yakhtar, V., Peletminskii, S.: Spin Waves. Science, Moscow (1967)Google Scholar
  29. 29.
    Camarero, J., et al.: Dynamical properties of magnetization reversal in exchange-coupled NiOÕCo bilayers. Phys. Rev. B. 64, 172402 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Scholl, A., et al.: Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 24(247201), 92 (2004)Google Scholar
  31. 31.
    Sanchez-Hanke, C., Kao, C.-C.: An element-sensitive hysteresis loop study ofan exchange-biased Co/NiO bilayer. J. Magn. Magn. Mater. 226-230, 1803 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, X., et al.: Antiferromagnetic skyrmion: stability, creation and manipulation. Sci. Rep. 6(24795), (2016)Google Scholar
  33. 33.
    Yi, J.B., et al.: Size-dependent magnetism and spin-glass behavior of amorphous NiO bulk, clusters, and nanocrystals: experiments and first-principles calculations. Phys. Rev. B. 76, 224402 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Perzlmaier, K., et al.: Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B. 77, 054425 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Nanayakkara, K., Jacob, A.P., Kozhanov, A.: Spin wave scattering and interference in ferromagnetic cross. J. Appl. Phys. 118, 163904 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Schneider, T., et al.: Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  2. 2.Institute of Magnetism NAS and MES of UkraineKyivUkraine

Personalised recommendations