Advertisement

Particulate Generation on Surface of Iron Selenide Films by Air Exposure

  • Hidenori HiramatsuEmail author
  • Kota Hanzawa
  • Toshio Kamiya
  • Hideo Hosono
Original Paper
  • 16 Downloads

Abstract

Nanometer-sized particular structures are generated on the surfaces of FeSe epitaxial films directly after exposure to air; this phenomenon was studied in the current work because these structures are an obstacle to field-induced superconductivity in electric double-layer transistors using FeSe channel layers. Chemical analyses using field-effect scanning Auger electron spectroscopy revealed no clear difference in the chemical composition between the particular structures and the other flat surface region. This observation limits the possible origins of the particulate formation to light elements in air such as O, C, H, and N.

Keywords

Iron-based superconductors Chalcogenides FeSe Electric double-layer transistor Degradation 

Notes

Funding information

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) through the Element Strategy Initiative to Form Core Research Center. H. Hi. was also supported by the Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid for Scientific Researches (A) and (B) (Grant Nos. 17H01318 and 18H01700), and Support for Tokyotech Advanced Research (STAR).

References

  1. 1.
    Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., Hosono, H.: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128, 10012–10013 (2006).  https://doi.org/10.1021/ja063355c CrossRefGoogle Scholar
  2. 2.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).  https://doi.org/10.1021/ja800073m CrossRefGoogle Scholar
  3. 3.
    For a review, Hosono, H., Kuroki, K.: Iron-based superconductors: current status of materials and pairing mechanism. Physica C. 514, 399–422 (2015).  https://doi.org/10.1016/j.physc.2015.02.020
  4. 4.
    For a review, Hosono, H., Tanabe, K., Takayama-Muromachi, E., Kageyama, H., Yamanaka, S., Kumakura, H., Nohara, M., Hiramatsu, H., Fujitsu, S.: Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides. Sci. Technol. Adv. Mater. 16, 033503 (2015).  https://doi.org/10.1088/1468-6996/16/3/033503 CrossRefGoogle Scholar
  5. 5.
    For a review, Putti, M., Pallecchi, I., Bellingeri, E., Cimberle, M.R., Tropeano, M., Ferdeghini, C., Palenzona, A., Tarantini, C., Yamamoto, A., Jiang, J., Jaroszynski, J., Kametani, F., Abraimov, D., Polyanskii, A., Weiss, J.D., Hellstrom, E.E., Gurevich, A., Larbalestier, D.C., Jin, R., Sales, B.C., Sefat, A.S., McGuire, M.A., Mandrus, D., Cheng, P., Jia, Y., Wen, H.H., Lee, S., Eom, C.B.: New Fe-based superconductors: properties relevant for applications. Supercond. Sci. Technol. 23, 034003 (2010).  https://doi.org/10.1088/0953-2048/23/3/034003 CrossRefGoogle Scholar
  6. 6.
    For a review, Ma, Y.: Progress in wire fabrication of iron-based superconductors. Supercond. Sci. Technol. 25, 113001 (2012).  https://doi.org/10.1088/0953-2048/25/11/113001 CrossRefGoogle Scholar
  7. 7.
    For a review, Shimoyama, J.: Potentials of iron-based superconductors for practical future materials. Supercond. Sci. Technol. 27, 044002 (2014).  https://doi.org/10.1088/0953-2048/27/4/044002 CrossRefGoogle Scholar
  8. 8.
    For a review, Hosono, H., Yamamoto, A., Hiramatsu, H., Ma, Y.: Recent advances in iron-based superconductors toward applications. Mater. Today. 21, 278–302 (2018).  https://doi.org/10.1016/j.mattod.2017.09.006 CrossRefGoogle Scholar
  9. 9.
    For a review, Iida, K., Hänisch, J., Tarantini, C.: Fe-based superconducting thin films on metallic substrates: growth, characteristics, and relevant properties. Appl. Phys. Rev. 5, 031304 (2018).  https://doi.org/10.1063/1.5032258
  10. 10.
    Weiss, J.D., Tarantini, C., Jiang, J., Kametani, F., Polyanskii, A.A., Larbalestier, D.C., Hellstrom, E.E.: High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. Nat. Mater. 11, 682–685 (2012).  https://doi.org/10.1038/NMAT3333 ADSCrossRefGoogle Scholar
  11. 11.
    Togano, K., Matsumoto, A., Kumakura, H.: Fabrication and transport properties of ex situ powder-in-tube (PIT) processed (Ba,K)Fe2As2 superconducting wires. Solid State Commun. 152, 740–746 (2012).  https://doi.org/10.1016/j.ssc.2011.12.014 ADSCrossRefGoogle Scholar
  12. 12.
    Gao, Z., Togano, K., Matsumoto, A., Kumakura, H.: Achievement of practical level critical current densities in Ba1−xKxFe2As2/Ag tapes by conventional cold mechanical deformation. Sci. Rep. 4, 4065 (2014).  https://doi.org/10.1038/srep04065 ADSCrossRefGoogle Scholar
  13. 13.
    Weiss, J.D., Yamamoto, A., Polyanskii, A.A., Richardson, R.B., Larbalestier, D.C., Hellstrom, E.E.: Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T. Supercond. Sci. Technol. 28, 112001 (2015).  https://doi.org/10.1088/0953-2048/28/11/112001 ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, X., Oguro, H., Yao, C., Dong, C., Xu, Z., Wang, D., Awaji, S., Watanabe, K., Ma, Y.: Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils. IEEE Trans. Appl. Supercond. 27, 7300705 (2017).  https://doi.org/10.1109/TASC.2017.2650408 CrossRefGoogle Scholar
  15. 15.
    Iida, K., Hänisch, J., Trommler, S., Matias, V., Haindl, S., Kurth, F., Lucas del Pozo, I., Hühne, R., Kidszun, M., Engelmann, J., Schultz, L., Holzapfel, B.: Epitaxial growth of superconducting Ba(Fe1–xCox)2As2 thin films on technical ion beam assisted deposition MgO substrates. Appl. Phys. Express. 4, 013103 (2011).  https://doi.org/10.1143/APEX.4.013103 ADSCrossRefGoogle Scholar
  16. 16.
    Katase, T., Hiramatsu, H., Matias, V., Sheehan, C., Ishimaru, Y., Kamiya, T., Tanabe, K., Hosono, H.: Biaxially textured cobalt-doped BaFe2As2 films with high critical current density over 1 MA/cm2 on MgO-buffered metal-tape flexible substrates. Appl. Phys. Lett. 98, 242510 (2011).  https://doi.org/10.1063/1.3599844 ADSCrossRefGoogle Scholar
  17. 17.
    Si, W., Zhou, J., Jie, Q., Dimitrov, I., Solovyov, V., Johnson, P.D., Jaroszynski, J., Matias, V., Sheehan, C., Li, Q.: Iron-chalcogenide FeSe0.5Te0.5 coated superconducting tapes for high field applications. Appl. Phys. Lett. 98, 262509 (2011).  https://doi.org/10.1063/1.3606557 ADSCrossRefGoogle Scholar
  18. 18.
    Trommler, S., Hänisch, J., Matias, V., Hühne, R., Reich, E., Iida, K., Haindl, S., Schultz, L., Holzapfel, B.: Architecture, microstructure and J c anisotropy of highly oriented biaxially textured co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes. Supercond. Sci. Technol. 25, 084019 (2012).  https://doi.org/10.1088/0953-2048/25/8/084019 ADSCrossRefGoogle Scholar
  19. 19.
    Si, W., Han, S.J., Shi, X., Ehrlich, S.N., Jaroszynski, J., Goyal, A., Li, Q.: High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla. Nat. Commun. 4, 1347 (2013).  https://doi.org/10.1038/ncomms2337 ADSCrossRefGoogle Scholar
  20. 20.
    Iida, K., Kurth, F., Chihara, M., Sumiya, N., Grinenko, V., Ichinose, A., Tsukada, I., Hänisch, J., Matias, V., Hatano, T., Holzapfel, B., Ikuta, H.: Highly textured oxypnictide superconducting thin films on metal substrates. Appl. Phys. Lett. 105, 172602 (2014).  https://doi.org/10.1063/1.4900931 ADSCrossRefGoogle Scholar
  21. 21.
    Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries. Sci. Rep. 6, 36828 (2016).  https://doi.org/10.1038/srep36828 ADSCrossRefGoogle Scholar
  22. 22.
    Iida, K., Sato, H., Tarantini, C., Hänisch, J., Jaroszynski, J., Hiramatsu, H., Holzapfel, B., Hosono, H.: High-field transport properties of a P-doped BaFe2As2 film on technical substrate. Sci. Rep. 7, 39951 (2017).  https://doi.org/10.1038/srep39951 ADSCrossRefGoogle Scholar
  23. 23.
    Xu, Z., Yuan, P., Ma, Y., Cai, C.: High-performance FeSe0.5Te0.5 thin films fabricated on less-well-textured flexible coated conductor templates. Supercond. Sci. Technol. 30, 035003 (2017).  https://doi.org/10.1088/1361-6668/30/3/035003 ADSCrossRefGoogle Scholar
  24. 24.
    Xu, Z., Yuan, P., Fan, F., Chen, Y., Ma, Y.: Transport properties and pinning analysis for Co-doped BaFe2As2 thin films on metal tapes. Supercond. Sci. Technol. 31, 055001 (2018).  https://doi.org/10.1088/1361-6668/aab261 ADSCrossRefGoogle Scholar
  25. 25.
    Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P.M., Lee, Y.-C., Huang, Y.-L., Chu, Y.-Y., Yan, D.-C., Wu, M.-K.: Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. U. S. A. 105, 14262–14264 (2008).  https://doi.org/10.1073/pnas.0807325105 ADSCrossRefGoogle Scholar
  26. 26.
    Medvedev, S., McQueen, T.M., Troyan, I.A., Palasyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat. Mater. 8, 630–633 (2009).  https://doi.org/10.1038/nmat2491 ADSCrossRefGoogle Scholar
  27. 27.
    Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., He, M., Chen, X.: Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys. Rev. B. 82, 180520(R) (2010).  https://doi.org/10.1103/PhysRevB.82.180520 ADSCrossRefGoogle Scholar
  28. 28.
    Ying, T.P., Chen, X.L., Wang, G., Jin, S.F., Zhou, T.T., Lai, X.F., Zhang, H., Wang, W.Y.: Observation of superconductivity at 30 – 46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu). Sci. Rep. 2, 426 (2012).  https://doi.org/10.1038/srep00426 ADSCrossRefGoogle Scholar
  29. 29.
    Burrard-Lucas, M., Free, D.G., Sedlmaier, S.J., Wright, J.D., Cassidy, S.J., Hara, Y., Corkett, A.J., Lancaster, T., Baker, P.J., Blundell, S.J., Clarke, S.J.: Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat. Mater. 12, 15–19 (2013).  https://doi.org/10.1038/nmat3464 ADSCrossRefGoogle Scholar
  30. 30.
    Guo, J., Lei, H., Hayashi, F., Hosono, H.: Superconductivity and phase instability of NH3-free Na-intercalated FeSe1–zSz. Nat. Commun. 5, 4756 (2014).  https://doi.org/10.1038/ncomms5756 ADSCrossRefGoogle Scholar
  31. 31.
    Sedlmaier, S.J., Cassidy, S.J., Morris, R.G., Drakopoulos, M., Reinhard, C., Moorhouse, S.J., O’Hare, D., Manuel, P., Khalyavin, D., Clarke, S.J.: Ammonia-rich high-temperature superconducting intercalates of iron selenide revealed through time-resolved in situ X-ray and neutron diffraction. J. Am. Chem. Soc. 136, 630–633 (2014).  https://doi.org/10.1021/ja411624q CrossRefGoogle Scholar
  32. 32.
    Lu, X.F., Wang, N.Z., Wu, H., Wu, Y.P., Zhao, D., Zeng, X.Z., Luo, X.G., Wu, T., Bao, W., Zhang, G.H., Huang, F.Q., Huang, Q.Z., Chen, X.H.: Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 14, 325–329 (2015).  https://doi.org/10.1038/nmat4155 ADSCrossRefGoogle Scholar
  33. 33.
    Ge, J.F., Liu, Z.L., Liu, C., Gao, C.L., Qian, D., Xue, Q.K., Liu, Y., Jia, J.F.: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015).  https://doi.org/10.1038/nmat4153 ADSCrossRefGoogle Scholar
  34. 34.
    Shiogai, J., Ito, Y., Mitsuhashi, T., Nojima, T., Tsukazaki, A.: Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 12, 42–46 (2016).  https://doi.org/10.1038/NPHYS3530 CrossRefGoogle Scholar
  35. 35.
    Lei, B., Cui, J.H., Xiang, Z.J., Shang, C., Wang, N.Z., Ye, G.J., Luo, X.G., Wu, T., Sun, Z., Chen, X.H.: Evolution of high-temperature superconductivity from a low-T c phase tuned by carrier concentration in FeSe thin flakes. Phys. Rev. Lett. 116, 077002 (2016).  https://doi.org/10.1103/PhysRevLett.116.077002 ADSCrossRefGoogle Scholar
  36. 36.
    Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. U. S. A. 113, 3986–3990 (2016).  https://doi.org/10.1073/pnas.1520810113 ADSCrossRefGoogle Scholar
  37. 37.
    Hanzawa, K., Sato, H., Hiramatsu, H., Kamiya, T., Hosono, H.: Key factors for insulator–superconductor transition in FeSe thin films by electric field. IEEE Trans. Appl. Supercond. 27, 7500405 (2017).  https://doi.org/10.1109/TASC.2016.2639738 CrossRefGoogle Scholar
  38. 38.
    Shiogai, J., Miyakawa, T., Ito, Y., Nojima, T., Tsukazaki, A.: Unified trend of superconducting transition temperature versus Hall coefficient for ultrathin FeSe films prepared on different oxide substrates. Phys. Rev. B. 95, 115101 (2017).  https://doi.org/10.1103/PhysRevB.95.115101 ADSCrossRefGoogle Scholar
  39. 39.
    Kouno, S., Sato, Y., Katayama, Y., Ichinose, A., Asami, D., Nabeshima, F., Imai, Y., Maeda, A., Ueno, K.: Superconductivity at 38 K at an electrochemical interface between an ionic liquid and Fe(Se0.8Te0.2) on various substrates. Sci. Rep. 8, 14731 (2018).  https://doi.org/10.1038/s41598-018-33121-7.
  40. 40.
    Hiramatsu, H., Hosono, H.: Thin-film growth and device fabrication of iron-based superconductors. TEION KOGAKU (J. Cryo. Soc. Jpn). 52, 433–442 (2017). (in Japanese)).  https://doi.org/10.2221/jcsj.52.433 CrossRefGoogle Scholar
  41. 41.
    Katase, T., Hiramatsu, H., Kamiya, T., Hosono, H.: Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc. Natl. Acad. Sci. U. S. A. 111, 3979–3983 (2014).  https://doi.org/10.1073/pnas.1318045111 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Materials and Structures, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
  2. 2.Materials Research Center for Element StrategyTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations