Vickers Microhardness Studies for SmBa2Cu3O7-δ Added with NiO Nanosized Particles

  • S. RmeidEmail author
  • H. Basma
  • M. Roumie
  • F. Elhaj Hassan
  • R. Awad
Original Paper


The effect of nanosized particles NiO addition on the Vickers microhardness of polycrystalline SmBa2Cu3O7-δ was investigated. Various amounts of nanosized particles NiO (x = 0.00, 0.02, 0.04, 0.08, and 0.12 wt%) were added to SmBa2Cu3O7-δ prepared by the solid-state reaction method. Sample characterizations were carried out using X-ray powder diffraction (XRD), particle induced X-ray emission (PIXE), Rutherford backscattering (RBS), and scanning electron microscopy (SEM). The nanosized particle addition does not influence the orthorhombic structure of SmBa2Cu3O7-δ, whereas it affects the oxygen content δ. The electrical and mechanical properties of (NiO)xSmBa2Cu3O7-δ samples were measured using four-standard probe technique and Vickers microhardness in order to investigate the effect of NiO nanosized particles on superconducting transition temperature and Vickers microhardness number Hv. The Vickers microhardness data were analyzed using Hays and Kendall (HK), elastic plastic deformation (EPD), and modified proportional specimen resistance (MPSR) models. The analysis showed that the MPSR model was found to be the best to describe the behavior of Hv.


Superconductor SmBa2Cu3O7-δ X-ray diffraction Vickers microhardness 



This work was performed in the Materials Science Lab, Physics Department, Faculty of Science, Beirut Arab University, Debbieh, in the Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut, Lebanon, and Research Platform for Environmental Sciences (PRASE)-DSST, Lebanese University (Beirut, Lebanon).


  1. 1.
    Oh, S.S., Ha, S.H., Kim, S.H., Ko, K.R., Song, J.K., Ha, W.D., Kim, H.T., Lee, J.N., Youm, D., Yang, S.J., Kim, K.H., Yu, K.K., Moon, H.S., Ko, P.K., Yoo, I.S.: Supercond. Sci. Technol. 21, 034003 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Larbalestier, D., Gurevich, A., Feldmann, D.M., Polyanskii, A.: Nature. 414, 368 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Gholipour, S., Daadmehr, V., Rezakhani, A.T., Khosroabadi, H., Shahbaz Teh-rani, F., Hosseini Akbarnejad, R.: J. Supercond. Nov. Magn. 25, 2253 (2012)CrossRefGoogle Scholar
  4. 4.
    Hellebrand, B., Gunasekaran, A.R., Steger, L.P., Bauerle, D.: Appl. Phys. A65, 235 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Hull, R.J., Murakami, M.: Proc. IEEE. 92, 1705–1718 (2004)CrossRefGoogle Scholar
  6. 6.
    Abdeen, W., El-Tahan, A., Roumié, M., Awad, R., AbouAly, I.A., El-Maghraby, M.E., Khalaf, A.: Role of improving the physical properties of Sm-123 phase by adding nano - magnetic MnFe2O4. J. Magn. Magn. Mater. 419, 354–362 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Mohammed, H.N., Abou-Aly, I.A., Ibrahim, H., Awad, R., Rekaby, M.: J. Low T. Phys. 172, 234 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Abdeen, W., Mohammed, H.N., Awad, R., Mahmoud, A.S., Hasebbo, M.: J. Supercond. Nov. Magn. 26, 623 (2013)CrossRefGoogle Scholar
  9. 9.
    Kong, W., Abd-Shukor, R.: J. Supercond. Nov. Magn. 23, 257 (2010)CrossRefGoogle Scholar
  10. 10.
    Awad, R., AbouAly, I.A., Mohammed, H.N., Isber, S., Motaweh, A.H., Bakeer El-Said, D.: Compd. Alloys J. 610, 614 (2014)CrossRefGoogle Scholar
  11. 11.
    Awad, R., AbouAly, I.A., Mohammed, H.N., Motaweh, A.H., Bakeer El-Said, D.: J. Supercond.Google Scholar
  12. 12.
    Suan, M.S., Johan, R.M.: Mater. Res. Innov. 18, 73 (2014)CrossRefGoogle Scholar
  13. 13.
    Leenders, A., Ullrich, M., Freyhardt, C.H.: Physica C. 279, 173–180 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Dogruer, M., Yildirim, O., Ozturk, O., Varilci, A., Soylu, N., Gorur, O., Terzioglu, C.: J. Mater. Sci.: Mater. Electron. (2013). 24, 1264–1273 (2012)Google Scholar
  15. 15.
    Gong, J., Wu, J., Guan, Z.: Ceram. Eur. J. Soc. 19, 2625 (1999)CrossRefGoogle Scholar
  16. 16.
    Mott, W.B.: Microindentation Hardness Testing, 9. Butterworths, London (1956)Google Scholar
  17. 17.
    Elmustafa, A.A., Stone, S.D.: J. Mech. Phys. Solids. 51, 357–381 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Asikuzun, E., Ozturk, O., Cetinkara, A.H., Yildirim, G., Varilci, A., Yilmazlar, M., Terzioglu, C.: Mater. J. Sci.-Mater. Electron. 23, 1001–1010 (2012)CrossRefGoogle Scholar
  19. 19.
    Celik, S., Ozturk, O., Coşkun, E.O., Sarıhan, M., Asikuzun, E., Ozturk, K., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 24, 2218–2227 (2013)CrossRefGoogle Scholar
  20. 20.
    Ozturk, O., Erdem, M., Asikuzun, E., Yildiz, O., Yildirim, G., Varilci, A., Terzioglu, C.: J. Mater. Sci. Mater. Electron. (2012).
  21. 21.
    Hays, C., Kendall, G.E.: Metallurgica. 6, 275–282 (1973)Google Scholar
  22. 22.
    Weiss, J.H.: Phys. Status Solidi. 99, 491–501 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    Dogruer, M., Yildirim, G., Ozturk, O., Terzioglu, C.: J. Supercond. Nov. Magn. (2013). 26, 101–109 (2012)CrossRefGoogle Scholar
  24. 24.
    Bull, S.J., Page, T.F., Yoffe, E.H.: Philos. Mag. Lett. 59, 281–288 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    Quinn, B.J., Quinn, D.G.: J. Mater. Sci. 32, 4331–4346 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Rmeid
    • 1
    Email author
  • H. Basma
    • 1
  • M. Roumie
    • 2
  • F. Elhaj Hassan
    • 3
  • R. Awad
    • 1
  1. 1.Department of PhysicsBeirut Arab UniversityBeirutLebanon
  2. 2.Lebanese Atomic Energy Commission- Accelerator LaboratoryBeirutLebanon
  3. 3.Research Platform for Environmental Sciences (PRASE)-DSSTLebanese UniversityBeirutLebanon

Personalised recommendations