Advertisement

Hidden Pair-Density-Wave Order in Cuprate Superconductors

  • Shiping FengEmail author
  • Deheng Gao
  • Yiqun Liu
  • Yingping Mou
  • Shuning Tan
Original Paper
  • 20 Downloads

Abstract

When the Mott insulating state is suppressed by charge carrier doping, the pseudogap phenomenon emerges, where at the low-temperature limit, superconductivity coexists with some ordered electronic states. Within the framework of the kinetic-energy–driven superconductivity, the nature of the pair-density-wave order in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the onset of the pair-density-wave order does not produce an ordered gap, but rather a novel hidden order as a result of the interplay of the charge-density-wave order with superconductivity. As a consequence, this novel hidden pair-density-wave order as a subsidiary order parameter coexists with the charge-density-wave order in the superconducting state, and is absent from the normal state.

Keywords

Charge-density-wave order Pair-density-wave order Superconducting state Normal state Cuprate superconductors 

Notes

Acknowledgements

The authors would like to thank Professor Yongjun Wang for helpful discussions.

Funding Information

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFA0300304, and the National Natural Science Foundation of China (NSFC) under Grant Nos. 11574032 and 11734002.

References

  1. 1.
    See, e.g., Hüfner, S., et al.: . Rep. Prog. Phys. 71, 062501 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    See, e.g., Basov, D.N., Timusk, T.: . Rev. Mod. Phys. 77, 721 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    See, e.g., Timusk, T., Statt, B.: . Rep. Prog. Phys. 62, 61 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Norman, M.R., et al.: . Nature 392, 157 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Yoshida, T., et al.: . Phys. Rev. B 74, 224510 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Kanigel, A., et al.: . Phys. Rev. Lett. 99, 157001 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Yoshida, T., et al.: . Phys. Rev. Lett. 103, 037004 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Yang, H. -B., et al.: . Nature 456, 77 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Meng, J., et al.: . Nature 462, 335 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, H.-B., et al.: . Phys. Rev. Lett. 107, 047003 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    See, e.g., The review, Comin, R., Damascelli, A.: . Annu. Rev. Condens. Matter Phys. 7, 369 (2016)CrossRefGoogle Scholar
  12. 12.
    Wu, T., et al.: . Nature 477, 191 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Chang, J., et al.: . Nat. Phys. 8, 871 (2012)CrossRefGoogle Scholar
  14. 14.
    Ghiringhelli, G., et al.: . Science 337, 821 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Comin, R., et al.: . Science 343, 390 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    da Silva Neto, E.H., et al.: . Science 343, 393 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Fujita, K., et al.: . Science 344, 612 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Campi, G., et al.: . Nature 525, 359 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Comin, R., et al.: . Nat. Mater. 14, 796 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Peng, Y.Y., et al.: . Phys. Rev. B 94, 184511 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Hinton, J.P., et al.: . Sci. Rep. 6, 23610 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Hamidian, M.H., et al.: . Nature 532, 343 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Badoux, S., et al.: . Nature 531, 210 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Sachdev, S., Placa, R.L.: . Phys. Rev. Lett. 111, 027202 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Meier, H., et al.: . Phys. Rev. B 88(R), 020506 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Harrison, N., Sebastian, S.E.: . New J. Phys. 16, 063025 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Atkinson, W.A., et al.: . New J. Phys. 17, 013025 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Feng, S., et al.: . Phil. Mag. 96, 1245 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Mou, Y., et al.: . Phil. Mag. 97, 3361 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Zhao, H., et al.: . J. Supercond. Nov. Magn. 31, 683 (2018)CrossRefGoogle Scholar
  31. 31.
    Zhao, H., et al.: . J. Supercond. Nov. Magn. 29, 3027 (2016)CrossRefGoogle Scholar
  32. 32.
    Gao, D., et al.: . Phys. C 551, 72 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Lee, P.A.: . Phys. Rev. X 4, 031017 (2014)Google Scholar
  34. 34.
    See, e.g., Fradkin, E., et al.: . Rev. Mod. Phys. 87, 457 (2015)CrossRefGoogle Scholar
  35. 35.
    Wang, Y., et al.: . Phys. Rev. B 91, 115103 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Feng, S.: . Phys. Rev. B 68, 184501 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Feng, S., et al.: . Physica C 436, 14 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Feng, S., et al.: . Phys. Rev. B. 85, 054509 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    See, e.g., the review, Feng, S., et al.: . Int. J. Mod. Phys. B 29, 1530009 (2015)CrossRefGoogle Scholar
  40. 40.
    Feng, S., et al.: . Phys. C 517, 5 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Gao, D., et al.: . J. Low Temp. Phys. 192, 19 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    See, e.g., the review, Damascelli, A., et al.: . Rev. Mod. Phys. 75, 473 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    See, e.g., the review, Campuzano, J.C., et al.: . In: Bennemann, K.H., Ketterson, J. (eds.) Physics of Superconductors, vol. II, p 167. Springer, Berlin (2004)Google Scholar
  44. 44.
    See, e.g., the review, Zhou, X.J., et al.: Handbook of High-Temperature Superconductivity: Theory and Experiment. In: Schrieffer, J. (ed.) , p 87. Springer, New York (2007)Google Scholar
  45. 45.
    Zhao, H., et al.: . Phys. C 534, 1 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    See, e.g., Mahan, G.D.: Many-Particle Physics. Plenum Press, New York (1981)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations