The Blocking Temperature of an Amorphous Alternate A and B Layers Cylindrical Nanowire
- 13 Downloads
Abstract
The blocking temperature of an amorphous cylindrical nanowire of length L and radius R is studied within the framework of Monte Carlo simulation based on Metropolis algorithm. The nanowire is formed by alternate layers of atoms A and B. The interlayer coupling JAB is ferromagnetic. The effects of the exchange couplings JB and JAB, the plane anisotropy Dxy, and the amorphization α on the blocking temperature of the system are investigated. We found that the blocking temperature increases with increasing the value of the exchange couplings JB and JAB and decreases with increasing the plane anisotropy Dxy and the degree of the amorphization α.
Notes
Acknowledgements
This work has been initiated with the support of URAC: 08 and the projet PPR: (MESRSFC-CNRST).
References
- 1.Zaim, N., Zaim, A., Kerouad, M.: Phys. Lett. A 380, 3404 (2016)ADSCrossRefGoogle Scholar
- 2.Zaim, N., Zaim, A., Kerouad, M.: Superlattices Microstruct. 100, 490 (2016)ADSCrossRefGoogle Scholar
- 3.Zaim, N., Zaim, A., Kerouad, M.: J. Magn. Magn. Mater. 424, 443 (2017)ADSCrossRefGoogle Scholar
- 4.Gao, C., Li, W., Morimoto, H., Nagaoka, Y., Maekawa, T.: J. Phys. Chem. B 110, 7213 (2006)CrossRefGoogle Scholar
- 5.Bader, S.D.: Rev. Mod. Phys. 78, 1 (2006)ADSCrossRefGoogle Scholar
- 6.Mahdi, J.M., Nsofor, E.C.: Int. J. Heat Mass Trans. 109, 417 (2017)CrossRefGoogle Scholar
- 7.Dutz, S., Hergt, R.: Nanotechnology 25, 452001 (2014)ADSCrossRefGoogle Scholar
- 8.Corti, M., Lascialfari, A., Micotti, E., Castellano, A., Donativi, M., Quarta, A., Cozzoli, P.D., Manna, L., Pellegrino, T., Sangregorio, C.: J. Magn. Magn. Mater. 320, e320–e323 (2008)ADSCrossRefGoogle Scholar
- 9.Mamiya, H., Ohnuma, M., Nakatani, I., Furubayashim, T.: IEEE Trans. Magn. 41, 3394 (2005)ADSCrossRefGoogle Scholar
- 10.Serantes, D., Baldomir, D., Pereiro, M., Hoppe, C.E., Rivadulla, F., Rivas, J.: Phys. Rev. B 82, 134433–1 (2010)ADSCrossRefGoogle Scholar
- 11.Tadic, M., Nikolic, D., Panjan, M., Blake, G.R.: J. Alloys Compd. 647, 1061 (2015)CrossRefGoogle Scholar
- 12.He, L.: Solid State Commun. 150, 743 (2010)ADSCrossRefGoogle Scholar
- 13.Seehra, M.S., Pisane, K.L.: J. Phys. Chem. Solids 93, 79 (2016)ADSCrossRefGoogle Scholar
- 14.Eltabey, M.M., Massoud, A.M., Radu, C.: Mater. Chem. Phys. 186, 505 (2017)CrossRefGoogle Scholar
- 15.Balogh, J., Kaptás, D., Kiss, L.F., Dézsi, I., Nakanishi, A., Devlin, E., Vasilakaki, M., Margaris, G., Trohidou, K.N.: J. Magn. Magn. Mater. 401, 386 (2016)ADSCrossRefGoogle Scholar
- 16.Dormann, J.L., Fiorani, D., Tronc, E.: Adv. Chem. Phys. 98, 283–494 (1997)Google Scholar
- 17.Arteaga-Cardona, F., Santillán-Urquiza, E., Pal, U., Méndoza-Álvarez, M.E., Torres-Duarte, C., Cherr, G.N., de la Presa, P., Méndez-Rojas, M.Á.: J. Magn. Magn. Mater. 441, 417 (2017)ADSCrossRefGoogle Scholar
- 18.Balaev, D.A., Semenova, S.V., Dubrovskiya, A.A., Yakushkinc, S.S., Kirillov, V.L., Martyanov, O.N.: J. Magn. Magn. Mater. 440, 199 (2017)ADSCrossRefGoogle Scholar
- 19.Shim, H., Dutta, P., Seehra, M.S., Bonevich, J.: Solid State Commun. 145, 192 (2008)ADSCrossRefGoogle Scholar
- 20.Yamamoto, Y., Tanaka, H., Kawai, T.: J. Magn. Magn. Mater. 261, 263 (2003)ADSCrossRefGoogle Scholar
- 21.Hu, Y., Du, A.: J. Magn. Magn. Mater. 322, 844 (2010)ADSCrossRefGoogle Scholar
- 22.Russier, V.: J. Magn. Magn. Mater. 409, 50 (2016)ADSCrossRefGoogle Scholar
- 23.Woińska, M., Szczytko, J., Majhofer, A., Gosk, J., Dziatkowski, K., Twardowski, A.: Phys. Rev. B 88, 144421 (2013)ADSCrossRefGoogle Scholar
- 24.Soler, M., Paterno, L., Sinnecker, J., Wen, J.G., Sinnecker, E., Neumann, R., Bahiana, M., Novak, M., Morais, P.: J. Nanoparticle Res. 14, 653 (2012)ADSCrossRefGoogle Scholar
- 25.Neumann, R., Bahiana, M., Paterno, L., Soler, M., Sinnecker, J., Wen, J., Morais, P.: J. Magn. Magn. Mater. 347, 26 (2013)ADSCrossRefGoogle Scholar
- 26.Wang, W., Bi, J.-l., Liu, R.-j., Chen, X., Liu, J.-p.: Superlattice. Microst. 98, 433 (2016)ADSCrossRefGoogle Scholar
- 27.Lv, D., Wang, F., Liu, R.-j., Xue, Q., Li, S.-x.: J. Alloys Compd. 701, 935 (2017)CrossRefGoogle Scholar
- 28.Wang, W., Liu, Y., Gao, Z.-y., Zao, X.-r, Yang, Y., Yang, S.: Physica E 101, 110 (2018)ADSCrossRefGoogle Scholar
- 29.Wang, W., Peng, Z., Lin, S.-s., Li, Q., Lv, D., Yang, S.: Superlattice. Microst. 113, 178 (2018)ADSCrossRefGoogle Scholar
- 30.Yang, Y., Wang, W., Lv, D., Liu, J.-p., Gao, Z.-y., Wang, Z.-y: . J. Phys. Chem. Solids 120, 109 (2018)ADSCrossRefGoogle Scholar
- 31.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
- 32.Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Clarendon Press, Oxford (1999)zbMATHGoogle Scholar
- 33.Peng, Z., Wang, W., Lv, D., Liu, R.J., Li, Q.: Superlattices Microstruct. 109, 675 (2017)ADSCrossRefGoogle Scholar
- 34.Jiang, W., Wang, Y.N., Guo, A.B., Yang, Y.Y., Shi, K.L.: Carbon 110, 41 (2016)CrossRefGoogle Scholar
- 35.Wang, W., Li, Q., Lv, D., Liu, R.J., Peng, Z., Yang, S.: Carbon 120, 313 (2017)CrossRefGoogle Scholar
- 36.Luo, X.H., Wang, W., Chen, D.D., Xu, S.Y.: J. Physica B: Condens. Matter 491, 51 (2016)ADSCrossRefGoogle Scholar
- 37.Jiang, W., Yang, Y.-Y., Guo, A.-B.: Study on magnetic properties of a nano-graphene bilayer. Carbon 95, 190 (2015)CrossRefGoogle Scholar
- 38.Trohidou, K., Vasilakaki, M.: Monte Carlo Studies of Magnetic Nanoparticles, Applications of Monte Carlo Method in Science and Engineering, InTech (2011)Google Scholar