Advertisement

Growth, Characterization and High-Field Magneto-Conductivity of Co0.1Bi2Se3 Topological Insulator

  • Rabia Sultana
  • Ganesh Gurjar
  • S. Patnaik
  • V. P. S. AwanaEmail author
Letter
  • 23 Downloads

Abstract

We report the crystal growth as well as transport properties of Co added Bi2Se3 (Co0.1Bi2Se3) single crystals. The values of the lattice parameters for pure and Co added sample were nearly the same. The Raman spectroscopy displayed slightly higher Raman shift of corresponding A1g1, Eg2, and A1g2 vibrational modes for Co0.1Bi2Se3, and the resistivity curves with and without applied magnetic field show a metallic behavior. Both the crystals were subjected to magneto-resistance (MR) measurements under applied fields of 14 T. The value of MR is found to decrease from about 380% (5 K, 14 T) for Bi2Se3 to 200% for Co0.1Bi2Se3. To elaborate the transport properties of pure and Co added Bi2Se3 crystals, the magneto-conductivity is fitted to the HLN (Hikami-Larkin-Nagaoka) equation, and it is found that the charge conduction is mainly dominated by surface-driven WAL (weak anti-localization) with negligible bulk WL (weak localization) contribution in both crystals alike. The MH curves of Co0.1Bi2Se3 crystal at different temperatures displayed a combination of both ferromagnetic and diamagnetic behavior. On the other hand, the electron paramagnetic resonance (EPR) revealed that pure Bi2Se3 is diamagnetic, whereas Co orders ferromagnetically with resonating field around 3422 Oe at room temperature. The calculated value of Lande “g” factor is around 2.04 ± 0.05. Summarily, the short letter discusses the interesting magneto-conductivity and complex magnetism of Co in Co0.1Bi2Se3.

Keywords

Topological insulator Crystal growth Magneto resistance Conduction mechanism 

Notes

Acknowledgements

The authors from CSIR-NPL would like to thank their Director NPL, India, for his keen interest in the present work. Authors further thank Mrs. Shaveta Sharma for Raman studies and Saurabh Pathak for EPR studies. S. Patnaik thanks DST-SERB project (EMR/2016/003998) for the low-temperature high magnetic facility at JNU, New Delhi. Rabia Sultana and Ganesh Gurjar thank CSIR, India, for research fellowship. Rabia Sultana thanks AcSIR-NPL for Ph.D. registration.

References

  1. 1.
    Hasan, M.Z., Kane, C.L.: Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Moore, J.E.: The birth of topological insulators. Nature. 464, 194–198 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, H., Liu, C.X., Qi, X.L., Dai, X., Fang, Z., Zhang, S.C.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009)CrossRefGoogle Scholar
  5. 5.
    Fu, L., Kane, C.L., Mele, E.J.: Topological Insulators in Three Dimensions. Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Kane, C.L., Mele, E.J.: Z2Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Bernevig, B.A., Zhang, S.-C.: Quantum Spin Hall Effect. Phys. Rev. Lett. 96, 106802 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B. 76, 045302 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Fu, L., Kane, C.L.: Probing Neutral Majorana Fermion Edge Modes with Charge Transport. Phys. Rev. Lett. 102, 216403 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Roushan, P., Seo, J., Parker, C.V., Hor, Y.S., Hsieh, D., Qian, D., Richardella, A., Hasan, M.Z., Cava, R.J., Yazdani, A.: Topological surface states protected from backscattering by chiral spin texture. Nature. 460, 1106–1109 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, Y.L., Chu, J.-H., Analytis, J.G., Liu, Z.K., Igarashi, K., Kuo, H.-H., Qi, X.L., Mo, S.K., Moore, R.G., Lu, D.H., Hashimoto, M., Sasagawa, T., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.X.: Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science. 329, 659–662 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, Q., Liu, C.X., Xu, C., Qi, X.-L., Zhang, S.-C.: Magnetic Impurities on the Surface of a Topological Insulator. Phys. Rev. Lett. 102, 156603 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Abanin, D.A., Pesin, D.A.: Ordering of Magnetic Impurities and Tunable Electronic Properties of Topological Insulators. Phys. Rev. Lett. 106, 136802 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Qi, X.-L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B. 78, 195424 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X., Fang, Z.: Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science. 329, 61–64 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., Wang, Y., Lu, L., Ma, X.-C., Xue, Q.-K.: Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science. 340, 167–170 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Qi, X.-L., Li, R., Zang, J., Zhang, S.-C.: Inducing a Magnetic Monopole with Topological Surface States. Science. 323, 1184–1187 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Tse, W.-K., MacDonald, A.H.: Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields. Phys. Rev. B. 82, 161104 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Nomura, K., Nagaosa, N.: Phys.Rev. Lett. 106, 166802 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Tse, W.-K., MacDonald, A.H.: Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Phys. Rev. B. 84, 205327 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Tse, W.-K., MacDonald, A.H.: Phys. Rev. Lett. 105, 057401 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Bao, L., Wang, W., Meyer, N., Liu, Y., Zhang, C., Wang, K., Ai, P., Xiu, F.: Quantum Corrections Crossover and Ferromagnetism in Magnetic Topological Insulators. Sci. Rep. 3, 2391 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Mcintyre, L.J.C., Harrison, S.E., Schonherr, P., Steinke, N.-J., Kinane, C.J., Charlton, T.R., Veneroa, D.A., Pushp, A., Kellock, A.J., Parkin, S.S.P., Harris, J.S., Langridge, S., Laan, G.V.D., Hasjedal, T.: Magnetic ordering in Cr-doped Bi2Se3thin films. EPL. 107, 57009 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Liu, M., Zhang, J., Chang, C.Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L.L., Chen, X., Dai, X., Fang, Z., Xue, Q.-K., Ma, X., Wang, Y.: Crossover between Weak Antilocalization and Weak Localization in a Magnetically Doped Topological Insulator. Phys. Rev. Lett. 108, 036805 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Cha, J.J., Williams, J.R., Kong, D., Meister, S., Peng, H., Bestwick, A.J., Gallagher, P., Gordon, D.G., Cui, Y.: Magnetic Doping and Kondo Effect in Bi2Se3Nanoribbons. Nano Lett. 10, 1076–1081 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Cha, J.J., Claassen, M., Kong, D., Hong, S.S., Koski, K.J., Qi, X.L., Cui, Y.: Effects of Magnetic Doping on Weak Antilocalization in Narrow Bi2Se3Nanoribbons. Nano Lett. 12, 4355–4359 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Liu, N., Teng, J., Li, Y.: Two-component anomalous Hall effect in a magnetically doped topological insulator. Nat. Commun. 9, 1282 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, L., Zhao, D., Zang, Y., Yuan, Y., Jiang, G., Liao, M., Zhang, D., He, K., Ma, X., Xue, Q.: Ferromagnetism in vanadium-doped Bi2Se3topological insulator films. APL Mater. 5, 076106 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Irfan, B., Chatterjee, R.: Magneto-transport and Kondo effect in cobalt doped Bi2Se3topological insulators. Appl. Phys. Lett. 107, 173108 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Min, Z., Li, L., Tao, W.Z., Sheng, Y.X., Yong Chin, Z.: Ferromagnetism on a paramagnetic host background in cobalt-doped Bi2Se3 topological insulator. Phys. B. 23, 076104 (2014)Google Scholar
  31. 31.
    Singh, R., Shukla, K.K., Kumar, A., Okram, G.S., Singh, D., Ganeshan, V., Lakhani, A., Ghosh, A.K., Chatterjee, S.: Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator. J. Phys. Condens. Matter. 28, 376001 (2016)Google Scholar
  32. 32.
    Zhang, M., Lv, L., Wei, Z., Yang, L., Yang, X., Zhao, Y.: Electrical and magnetic transport properties of Co-doped Bi2Se3 topological insulator crystals. Int. Jour. Mod. Phys. B. 28, 1450108 (2014)Google Scholar
  33. 33.
    Ashoush, M.A., El-Okr, M.M., Abd El-Fattah, Z.M.: J. Mater. Sci. Mater. Electron. 28, 3659 (2017)CrossRefGoogle Scholar
  34. 34.
    Rosenberg, G., Franz, M.: Surface magnetic ordering in topological insulators with bulk magnetic dopants. Phys. Rev. B. 85, 195119 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Yoo, T., Nasir, A.R., Bac, S.-K., Lee, S., Choi, S., Lee, S., Liu, X., Furdyna, J.K.: Magnetic properties of Ni films deposited on MBE grown Bi2Se3layers. AIP Adv. 7, 055819 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Fattah, Z.M.A.E., Ashoush, M.A.: J Mater Sci: Mater Electron. 29, 2593 (2018)Google Scholar
  37. 37.
    Hor, Y.S., Roushan, P., Beidenkopf, H., Seo, J., Qu, D., Checkelsky, J.G., Wray, L.A., Hsieh, D., Xia, Y., Xu, S.Y., Qian, D., Hasan, M.Z., Ong, N.P., Yazdani, A., and Cava R.J.: Development of ferromagnetism in the doped topological insulatorBi2−xMnxTe3. Phys. Rev. B. 81, 195203 (2010), Google Scholar
  38. 38.
    Niu, C., Dai, Y., Guo, M., Wei, W., Ma, Y., Huang, B.: Mn induced ferromagnetism and modulated topological surface states in Bi2Te3. Appl. Phys. Lett. 98, 252502 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Zhou, Z., Zabeik, M., Lostak, P., Uher, C.: Magnetic and transport properties of Sb2-xFexTe3 (0<x<0.02) single crystals. Jour. Appl. Phys. 99, 043901 (2006)Google Scholar
  40. 40.
    Singh, A., Ghosh, A.K., Chatterjee, S.: Antiferromagnetic Ordering at Room Temperature in Co-Doped Sb2Te3 Topological Insulators. J. Supercond. Nov. Magn. 31, 299–305 (2018)CrossRefGoogle Scholar
  41. 41.
    Lu, H.-Z., Shi, J., Shen, S.-Q.: Phys. Rev. Lett. 107, 076801 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Sultana, R., Awana, G., Pal, B., Maheshwari, P.K., Mishra, M., Gupta, G., Gupta, A., Thirupathaiah, S., Awana, V.P.S.: Electrical, Thermal and Spectroscopic Characterization of Bulk Bi2Se3 Topological Insulator. J. Supercond. Nov. Magn. 30, 2031–2036 (2017)CrossRefGoogle Scholar
  43. 43.
    Sultana, R., Neha, P., Goyal, R., Patnaik, S., Awana, V.P.S.: Unusual non saturating Giant Magneto-resistance in single crystalline Bi 2 Te 3 topological insulator. J. Magn. Mag. Mater. 428, 213–218 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Wang, M., Song, Y., You, L., Li, Z., Gao, B., Xie, X., Jiang, M.: A combined method for synthesis of superconducting Cu doped Bi2Se3. Sci. Rep. 6, 22713 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Shruti, V.K., Maurya, P., Neha, P.S., Patnaik, S.: Superconductivity by Sr intercalation in the layered topological insulatorBi2Se3. Phys. Rev. B. 92, 020506 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Sultana, R., Gurjar, G., Patnaik, S., Awana, V.P.S.: Crystal growth and characterization of bulk Sb2Te3 topological insulator. Mat. Res. Exp. 5, 046107 (2018)Google Scholar
  47. 47.
    Shahil, K.M.F., Hossain, M.Z., Goyal, V., Balandin, A.A.: Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3materials. J. Appl. Phys. 111, 054305 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Awana, G., Sultana, R., Maheshwari, P.K., Goyal, R., Gahtori, B., Gupta, A., Awana, V.P.S.: Crystal Growth and Magneto-transport of Bi2Se3 Single Crystals. J. Sup. & Novel Mag. 30, 853–856 (2017)CrossRefGoogle Scholar
  49. 49.
    Sultana, R., Maheshwari, P.K., Tiwari, B., Awana, V.P.S.: High field (up to 14 Tesla) Angle Dependent Magneto Transport of Bi2Te3 Single crystals. Mater. Res. Express. 5, 016102 (2018)Google Scholar
  50. 50.
    Hikami, S., Larkin, A.I., Nagaoka, Y.: Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System. Prog. Theor. Phys. 63, 707–710 (1980)ADSCrossRefGoogle Scholar
  51. 51.
    He, H.-T., Wang, G., Zhang, T., Sou, I.-K., Wong, G.K.L., Wang, J.-N.: Impurity Effect on Weak Antilocalization in the Topological Insulator Bi2Te3. Phy. Rev. Lett. 106, 166805 (2011)Google Scholar
  52. 52.
    Ning, W., Du, H., Kong, F., Yang, J., Han, Y., Tian, M., Zhang, Y.: One-dimensional weak antilocalization in single-crystal Bi2Te3 nanowires. Sci. Rep. 3, 1564 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    Bao, L., He, L., Meyer, N., Kou, X., Zhang, P., Chen, Z.-G., Fedorov, A.V., Zou, J., Riedemann, T.M., Lograsso, T.A., Wang, K.L., Tuttle, G., Xiu, F.: Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te. Sci. Rep. 2, 726 (2012)CrossRefGoogle Scholar
  54. 54.
    Cha, J.J., Kong, D., Hong, S.-S., Analytis, J.G., Lai, K., Cui, Y.: Weak Antilocalization in Bi2(SexTe1–x)3Nanoribbons and Nanoplates. Nano Lett. 12, 1107–1111 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Hamdou, B., Gooth, J., Dorn, A., Pippel, E., Nielsch, K.: Aharonov-Bohm oscillations and weak antilocalization in topological insulator Sb2Te3nanowires. Appl. Phys. Lett. 102, 223110 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    Akiyama, R., Fujisawa, K., Yamaguchi, T., Ishikawa, R., Kuroda, S.: Two-dimensional quantum transport of multivalley (111) surface state in topological crystalline insulator SnTe thin films. Nano Res. 9, 490–498 (2016)CrossRefGoogle Scholar
  57. 57.
    Lu, H.-Z., Shen, S.-Q.: Weak localization of bulk channels in topological insulator thin films. Phy. Rev. B. 84, 125138 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Physical Laboratory (CSIR)New DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  3. 3.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations