Advertisement

Weak Ferroelectricity and Leakage Current Behavior of Multiferroic CoCr2O4 Nanomaterials

  • Pankaj ChoudharyEmail author
  • P. Saxena
  • A. Yadav
  • A. K. Sinha
  • V. N. Rai
  • M. D. Varshney
  • A. Mishra
Original Paper
  • 39 Downloads

Abstract

Multiferroic CoCr2O4 is synthesized by low-temperature sol-gel auto combustion technique. High energy synchrotron x-ray diffraction pattern confirms the single-phase cubic structure with space group Fd3m. Average crystallite size (17.91 nm) and negative micro-strain (9.86 × 10−4) are estimated by Williamson–Hall (W-H) plot. FTIR confirms the formation of spinel metal oxide-based cobalt chromites. The strong decrease in ε′ and tan δ at higher frequency can be interpreted by Maxwell-Wagner-type interfacial polarization. Weak ferroelectricity is mainly attributed to the partial reversal of polarization. J-E characteristic reveals the Ohmic (I–V) and Child’s square law (I–V2) behavior observed in CoCr2O4 nanomaterials with slope value ~ 1.04 and ~ 1.6, respectively. The conduction process for the leakage current density is interpreted using the space-charge limited current (SCLC) mechanism.

Keywords

Multiferroic CoCr2O4 Synchrotron x- ray diffraction Dielectric properties Polarization Leakage-current behavior 

Notes

Acknowledgements

Authors acknowledge fruitful discussion with Dr. V. Ganesan and Dr. D. M. Phase of UGC-DAE-CSR, Indore. Thanks to Prof. Dr. Pratibha Sharma, School of Chemical Science, Indore, for providing the FTIR (Fourier transform infrared radiation) facility. Technical support from Mr. Vinay K Ahire, UGC-DAE-CSR, Indore, is also gratefully acknowledged.

Funding Information

Facilities and financial assistance was received from UGC-DAE CSR, as an institute (Grant No.: CSRIC/BL-22/CRS-119-2014/269).

References

  1. 1.
    Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nature. 6, 21–29 (2007)CrossRefGoogle Scholar
  2. 2.
    Khomskii, D.: Classifying multiferroics: Mechanisms and effects. Physics. 2, 20 (2009)CrossRefGoogle Scholar
  3. 3.
    Yoo, E.J., Lyu, M., Yun, J.H., Kang, C.J., Choi, Y.J., Wang, L.: Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3−xClxPerovskite for Resistive Random Access Memory Devices. Adv. Mater. 27, 6170–6175 (2015)CrossRefGoogle Scholar
  4. 4.
    Lin, G. T., Wang, Y. Q., Luo, X., Ma, J., Zhuang, H. L., Qian, D., Yin, L. H., Chen, F. C., Yan, J., Zhang, R. R., Zhang, S. L., Tong, W., Song, W. H., Tong, P., Zhu, X. B., Sun, Y. P.: Magnetoelectric and Raman spectroscopic studies of monocrystalline MnCr2O4. Phy. Rew. B 97, 064405 (2018)Google Scholar
  5. 5.
    Choudhary, P., Varshney, D.: Structural, vibrational and dielectric behavior of Co1M Cr2O4 (M = Zn, Mg, Cu and x = 0.0, 0.5) spinel chromites. J. Alloy. Compd. 725, 415–424 (2017)CrossRefGoogle Scholar
  6. 6.
    Sethi, A., Byrum, T., McAuliffe, R.D., Gleason, S.L., Slimak, J.E., Shoemaker, D.P., Cooper, S.L.: Magnons and magnetodielectric effects inCoCr2O4: Raman scattering studies. Phy. Rew. B. 95, 174413 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Windsor, Y.W., Piamonteze, C., Ramakrishnan, M., Scaramucci, A., Rettig, L., Huever, J.A., Bothschafter, E.M., Bingham, N.S., Alberca, A., Avula, S.R.V., Noheda, B., Staub, U.: Magnetic properties of strained multiferroicCoCr2O4: A soft x-ray study. Phy. Rew. B. 95, 224413 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Yao, X.Y., Yang, L.J.: Multiple conical spin order in spinel structure stabilized by magnetic anisotropy. Front. Phys. 12, 127501 (2017)CrossRefGoogle Scholar
  9. 9.
    Guo, M., Tang, B., Zhang, H., Yin, S., Jiang, W., Zhang, Y., Li, M., Wang, H., Jiao, L.: A high efficiency CoCr2O4/carbon nanotubes nanocomposite electrocatalyst for dye-sensitised solar cells. Chem. Commun. 50, 7356 (2014)CrossRefGoogle Scholar
  10. 10.
    Lempert, M.A.: Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rew. 103, 1648–1656 (1956)ADSCrossRefGoogle Scholar
  11. 11.
    Carbone, A., Kotowska, B.K., Kotowski, D.: Space-Charge-Limited Current Fluctuations in Organic Semiconductors. Phy. Rew. Lett. 95, 236601 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Sharma, Y., Misra, P., Katiyar, R. S.: Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Apl. Phy. 116, 084505 (2014)Google Scholar
  13. 13.
    Subramania, A., Angayarkanni, N., Vasudevan, T.: Effect of PVA with various combustion fuels in sol–gel thermolysis process for the synthesis of LiMn2O4 nanoparticles for Li-ion batteries. Mat. Chem. Phys. 102, 19–23 (2007)CrossRefGoogle Scholar
  14. 14.
    Padmaraj, O., Venkateswarlu, M., Satyanarayana, N.: Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram. Int. 41, 3178–3185 (2015)CrossRefGoogle Scholar
  15. 15.
    Maczka, M., Ptak, M., Kurnatowska, M., Hanuza, J.: Mat. Chem. Phys. 138, 682 (2013)Google Scholar
  16. 16.
    Sharma, R., Thakur, P., Kumar, M., Thakur, N., Negi, N.S., Sharma, P., Sharma, V.: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloy. Compd. 684, 569–581 (2016)CrossRefGoogle Scholar
  17. 17.
    Khattab, R.M., Sadek, H.E.H., Gaber, A.A.: Synthesis of CoxMg1−xAl2O4 nanospinel pigments by microwave combustion method. Ceram. Int. 43, 234–243 (2017)CrossRefGoogle Scholar
  18. 18.
    Hu, J., Zhao, W., Hu, R., Chang, G., Li, C., Wang, L.: Catalytic activity of spinel oxides MgCr2O4 and CoCr2O4 for methane combustion. Mat. Res. Bul. 57, 268–273 (2014)CrossRefGoogle Scholar
  19. 19.
    Mohammed, K.A., Rawas, A.D., Gismelseed, A.M., Sellai, A., Widatallah, H.M., Yousif, A., Elzain, M.E., Shongwe, M.: Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B. 407, 795–804 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Xu, Y.M., Zhang, N.: Magnetocapacitance effects in MnZn ferrites. AIP Adv. 5, 117130 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Yildiz, D.E., Dokme, I.: Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes. J. Appl. Phy. 110, 014507 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Demirezen, S., Kaya, A., Yeriskin, S. A., Balbas. M., Uslu, I.: Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Res. Phys. 6, 180 (2016)Google Scholar
  23. 23.
    Desmond, M., Mavrogiannis, N., Gagnon, Z.: Maxwell-Wagner Polarization and Frequency-Dependent Injection at Aqueous Electrical Interfaces. Phy. Rew. Lett. 109, 187602 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Koops, C.G.: On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev. 83, 121–124 (1951)ADSCrossRefGoogle Scholar
  25. 25.
    Suchomski, C., Reitz, C., Brezesinski, K., Sousa, C.T., Rohnke, M., Iimura, K., Araujo, J.P.E., Brezesinski, T.: Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr2O4and MCr2–xFexO4(M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes. Chem. Mater. 24, 155–165 (2012)CrossRefGoogle Scholar
  26. 26.
    Rabe, K.M., Dawber, M., Lichtensteiger, C., Ahn, C.H., Triscone, J.M.: Physics of ferroelectrics: a modern perspective. Top. Appl. Phys. 105, 1–30 (2007)CrossRefGoogle Scholar
  27. 27.
    Choi, N. Y. J., Okamoto, J., Huang, D. J., Chao, K. S., Lin, H. J., Chen, C. T., Veenendaal, M., Kaplan, T. A., Cheong, S. W.: Thermally or Magnetically Induced Polarization Reversal in the Multiferroic CoCr2O4. Phy. Rew. Lett. 102, 067601 (2009)Google Scholar
  28. 28.
    Bhowmik, R.N., Sinha, A.K.: Improvement of room temperature electric polarization and ferrimagnetic properties of Co1.25Fe1.75O4 ferrite by heat treatment. J. Magn. Magn. Mat. 421, 120–131 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Kalita, P.K., Sarma, B.K., Das, H.L.: Space charge limited conduction in CdSe thin films. B. Mat. Sci. 26, 613–617 (2003)CrossRefGoogle Scholar
  30. 30.
    Qi, X., Dho, J., Tomov R., Blamire, M. G., Driscoll, J. L. M.: Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phy. Let. 86, 062903 (2005)Google Scholar
  31. 31.
    Scott, J.F.: There’s no place like Ohm: conduction in oxide thin films. J. Phy. Cond. Mat. 26, 142202 (2014)CrossRefGoogle Scholar
  32. 32.
    Sharma, Y., Misra, P., Diestra, D.G.B., Chatterjee, R., Katiyar, R.S.: Room temperature weak multiferroism and magnetodielectric effect in highly oriented (Y 0.9 Bi 0.1 )(Fe 0.5 Cr 0.5 )O 3 thin films. Mat. Res. Bul. 68, 49–53 (2015)CrossRefGoogle Scholar
  33. 33.
    Elakrmi, E., Chaabane, R. B., Ouada, H. B.: Structure and electrical properties of nanostructured zinc oxide films prepared for optoelectronic applications. Akademeia. 2, 1923 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science Laboratory, School of Physics, Vigyan BhawanDevi Ahilya UniversityIndoreIndia
  2. 2.Department of PhysicsMedi-Caps UniversityIndoreIndia
  3. 3.Indus Synchrotron Utilization DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations