Advertisement

Evaluation of Superconducting Properties and Diffusion Behavior of Ex Situ and In Situ Bulk MgB2 Materials with Ni Coating

  • Asaf Tolga UlgenEmail author
Original Paper
  • 38 Downloads

Abstract

Ex situ and in situ bulk MgB2 superconducting materials have successfully been produced by the simple amorphous boron and nano-amorphous boron powders with the processes of ball milling, pressing, and annealing. The superconducting properties and diffusion behavior of MgB2 samples after nickel (Ni) coating process have been characterized and compared to the microstructure and performance of uncoated (bare) MgB2 bulk sample. One surface of MgB2 superconductor sample was coated with a thin Ni layer of about 50 − 60μm thickness using vapor deposition techniques in versatile high vacuum coater, then every sample was annealed at temperatures between 923 and 1123 K for 1 h. The role of annealing temperature on physical, electrical, superconducting, and structural characterizations of bare and Ni-coated ex situ/in situ MgB2 bulk superconductors has been studied using X-ray diffraction and dc electrical resistivity versus temperature measurements. Finally, the Ni diffusion coefficients (DNi = D0exp(E/kBT)) are calculated in the temperature range to calculate the required minimum activation energy value for the Ni atoms/ions into the ex situ MgB2 crystal structure for the first time.

Keywords

Ex situ and in situ MgB2 bulk samples Ni coated Diffusion coefficient Activation energy 

Notes

Funding Information

This work is supported by the Scientific and Technological Research Council of Turkey (Project no. 117F263) and in part by Sirnak University Research Fund Grant No. 2017.03.02.01.

References

  1. 1.
    Onnes, H.K.: Commun. Phys. Lab. Univ. Leiden 12, 120 (1911)Google Scholar
  2. 2.
    Onnes, H.K.: Proceedings of the KNAW 13, 1910 (1911)Google Scholar
  3. 3.
    Jones, M.E., Marsh, R.E.: J. Am. Chem. Soc 76, 870 (1953)Google Scholar
  4. 4.
    Russell, V., Hirst, R., Kanda, F., King, A.J.: Acta Crystallogr. 6, 870 (1953)CrossRefGoogle Scholar
  5. 5.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410, 63 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Ulgen, A.T.: J. BAUN Inst. Sci. Technol. 19(3), 121 (2017)Google Scholar
  7. 7.
    Karaboga, F., Ulgen, A.T., Yetis, H., Akdogan, M., Pakdil, M., Belenli, I.: Mater. Sci. Eng. A. 721, 89 (2018)CrossRefGoogle Scholar
  8. 8.
    Ertekin, E., Gecer, S., Yanmaz, E., et al.: J. Supercond. Nov. Magn. 30, 3549 (2017)CrossRefGoogle Scholar
  9. 9.
    Al, H., Aksu, E., Gencer, A.: J. Supercond. Nov. Magn. 30, 2735 (2017)CrossRefGoogle Scholar
  10. 10.
    Tan, K.Y., Tan, K.L., Tan, K.B., et al.: J. Supercond. Nov. Magn. 24, 2025 (2011)CrossRefGoogle Scholar
  11. 11.
    Ma, Z., Liu, Y.C., Hu, W.P., Gao, Z.M., Yu, L.M., Dong, Z.Z.: Scr. Mater. 61, 836 (2009)CrossRefGoogle Scholar
  12. 12.
    Erdem, O., Abdioglu, M., Guner, S.B., Celik, S., Kucukomeroglu, T.: J. Alloys. Compds. 727, 1213 (2017)CrossRefGoogle Scholar
  13. 13.
    Alghamdi, F.S., Shahabuddin, M., Alzayed, N.S., et al.: J. Supercond. Nov. Magn. 31, 1119 (2018)CrossRefGoogle Scholar
  14. 14.
    Ulgen, A.T., Belenli, I.: J. Supercond. Nov. Magn. 30, 3367 (2017)CrossRefGoogle Scholar
  15. 15.
    Dogruer, M., Yildirim, G., Ozturk, O., et al.: J. Supercond. Nov. Magn. 26, 101 (2013)CrossRefGoogle Scholar
  16. 16.
    Olutaş, M., Kiliç, A., Kiliç, K., et al.: J. Supercond. Nov. Magn. 25, 753 (2012)CrossRefGoogle Scholar
  17. 17.
    Drozd, V.A., Gabovich, A.M., Gierlowski, P., Pekala, M., Szymczak, H.: Phys. C 402, 325 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Novosel, N., Galic, S., Pajic, D., Skoko, Z., Loncarek, I., Mustapic, M., Zadro, K., Babic, E.: Supercond. Sci. Technol. 26, 105024 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Guner, S.B., Zalaoglu, Y., Turgay, T., Ozyurt, O., Ulgen, A.T., Dogruer, M., Yildirim, G.: J. Alloys Comp. 772, 388–398 (2019)CrossRefGoogle Scholar
  20. 20.
    Al, H.: J. Mater. Sci. Mater. Electron. 29(19), 16157–16165 (2018)CrossRefGoogle Scholar
  21. 21.
    Terzioglu, R., Aydin, G., Soylu Koc, N., et al.: J. Mater. Sci. Mater. Electron.  https://doi.org/10.1007/s10854-018-0497-8 (2018)
  22. 22.
    Zalaoglu, Y., Terzioglu, C., Turgay, T., Yildirim, G.: J. Mater. Sci: Mater. Electron. 29, 3239 (2018)Google Scholar
  23. 23.
    Yildirim, G.: J. Alloy. Compd. 745, 100 (2018)CrossRefGoogle Scholar
  24. 24.
    Buckel, W., Kleiner, R.: Superconductivity: Fundamentals and Applications, 2nd edn. Wiley-VCH Verlag, Weinheim (2004)CrossRefGoogle Scholar
  25. 25.
    Xu, H.H., Cheng, L., Yan, S.B., Yu, D.J., Guo, L.S., Yao, X.: J. Appl. Phys. 111, 103910 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Yildirim, G.: J. Alloy. Compd. 699, 247–255 (2017)CrossRefGoogle Scholar
  27. 27.
    Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Riedel, T., Goebel, B., Wippich, D., Schirrmeister, P.: Supercond. Sci. Technol. 25, 014007 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Fick, A.: Ueber diffusion. Ann. Phys. 170(1), 59 (1855)CrossRefGoogle Scholar
  29. 29.
    Arrhenius, S.: Zeitschrift fur physikalische Chemie 4(1), 96 (1889)Google Scholar
  30. 30.
    Faraboa, F., Yetiş, H., Akdoan, M., et al.: J. Supercond. Nov. Magn. 31, 1359 (2018)CrossRefGoogle Scholar
  31. 31.
    Chen, X.J., Xia, T.D., Liu, X.L., et al.: J. Alloys Comput. 426, 123 (2006)CrossRefGoogle Scholar
  32. 32.
    Taylor, A., Sinclair, H.: Proc. Phys. Soc. 57(2), 126 (1945)ADSCrossRefGoogle Scholar
  33. 33.
    Patterson, A.L.: Phys. Rev. 56(10), 978 (1939)ADSCrossRefGoogle Scholar
  34. 34.
    Heitjans, P., Kärger, J. (eds.): Diffusion in Condensed Matter—Methods, Materials, Models. Springer, Berlin (2005)Google Scholar
  35. 35.
    Grathwohl, P.: Diffusion in Natural Porous Media, vol. 1. Springer Science and Business Media, Berlin (2012)Google Scholar
  36. 36.
    Dogan, O., Ertugrul, M., Cevik, U., Bacaksiz, E., Tirasoglu, E., Kobya, A.I., Erdogan, H.: X-Ray Spectrom. 32, 363 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Abdullaev, G.B., Dzhafarov, T.D.: Atomic Diffusion in Semiconductor Structures, 2nd edn. Harwood (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Electric and Electronic EngineeringSirnak UniversitySirnakTurkey

Personalised recommendations