Advertisement

Magnetic Properties and Electronic Structure of Ni/C Multilayer Films

  • A. SaadiEmail author
  • M. Lassri
  • R. Moubah
  • H. Lassri
  • Y. Boughaleb
  • M. Abid
  • A. Boudali
Original Paper
  • 19 Downloads

Abstract

The magnetic properties of Ni/C multilayers were investigated using vibrating sample magnetometer and ferromagnetic resonance (FMR). Spin wave resonances were seen in FMR and the spin wave was found to be sustained through whole layers. The interlayer coupling constant was small pointing out a weak exchange coupling between Ni films through C spacers. The FMR linewidth, in parallel geometry, of the uniform mode decreases with the increase in Ni thickness from 30 to 300 Å which can be understood by considering interfacial effects. The magnetization decreases with decreasing Ni thickness due to the structural imperfections associated with the presence of Ni1−xCx alloys at the interface. Density functional theory (DFT) has been performed to shed light on the decrease in magnetic moment at the interfaces.

Keywords

Ni/C multilayers Ferromagnetic resonance Spin waves Interlayer coupling DFT 

Notes

References

  1. 1.
    Bakhshayeshi, A., Mendi, R.T., Khadiv, F.P.: J Supercond Magn. 30, 2871 (2017)CrossRefGoogle Scholar
  2. 2.
    Agazzi, L., Bennett, S., Berry, F.J., Carbucicchio, M., Rateo, M., Ruggiero, G., Turilli, G.J.: Appl. Phys. 92, 3231 (2002)CrossRefGoogle Scholar
  3. 3.
    Charkaoui, A., Saadi, A., Moubah, R., Lassri, M., Bouhbou, M., Bakkari, K., Mliki, N., Hassini, A., Lassri, H.: J. Supercond. Nov. Magn. 1–6 (2018)Google Scholar
  4. 4.
    Kuru, H., Kockar, H., Alper, M.: J. Magn. Magn. Mater. 444, 132 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Tekgül, A., Alper, M., Kockar, H.: J. Magn. Magn. Mater. 421, 472 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Antarnusa, G., Swastika, P.E., Suharyadi, E.: JPCS. 1011, 012061 (2018)Google Scholar
  7. 7.
    Vilela, G.L.S., Monsalve, J.G., Rodrigues, A.R., Azevedo, A., Machado, F.L.A.: J. Appl. Phys. 121, 124501 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, X., Gao, Y., Chen, H., Chen, Y., Liang, X., Lin, W., Sun, N.X.: Phys. Lett. A. 382, 1505 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, X., Li, X., Bac, S. K., Zhang, S., Dong, S., Lee, S., Furdyna, J. K.: AIP Adv. 8, 056402 (2018)Google Scholar
  10. 10.
    Modak, R., Samantaray, B., Mandal, P., Srinivasu, V.V., Srinivasan, A.: AIP Conf. Proc. 1953, 120006 (2018)CrossRefGoogle Scholar
  11. 11.
    Yamkane, Z., Lassri, H., Omari, N., Hlil, E.K.: J. Supercond. Nov. Magn. 25, 1489 (2012)CrossRefGoogle Scholar
  12. 12.
    Salhi, H., Chafai, K., Msieh, O., Lassri, H., Benkirane, K., Abid, M., Bessais, L., Hlil, E.K.: J. Supercond. Nov. Magn. 24, 1375 (2011)CrossRefGoogle Scholar
  13. 13.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Comput. Phys. Commun. 59, 399 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    Gao, S.: Comput. Phys. Commun. 153, 190 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Tran, F., Blaha, P.: Phys. Rev. B. 83, 235118 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Abid, M., Ouahmane, H., Lassri, H., Khmou, A., Krishnan, R.: J. Magn. Magn. Mater. 202, 335 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Morales, M.A., Lassri, H., Biondo, A., Rossi, A., MBaggio-Saitovitch, E.: J. Magn. Magn. Mater. 256(93), (2013)Google Scholar
  18. 18.
    Puszkarski, H.: Prog. Surf. Sci. 9, 191 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    van Stapele, R.P., Greidanus, F.J.A.M., Smits, J.W.: J. Appl. Phys. 57, 1282 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, Z.J., Mitsudo, S., Watanabe, K., Awaji, S., Saito, K., Fujimori, H., Motokawa, M.: J. Magn. Magn. Mater. 17, 127 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    Hurdequint, H.: J. Magn. Magn. Mater. 310, 2061 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Gibson, J.S., Uddin, J., Cundari, T.R., Bodiford, N.K., Wilson, A.K.: J. Phys. Condens. Matter. 22, 445503 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Yang, J., Xiao, Z., Wen, Z., Li, Q., Yang, F.: Comput. Condens. Matter. 1, 51–57 (2014)Google Scholar
  24. 24.
    Kelling, J., Zahn, P., Schuster, J., Gemming, S.: Phys. Rev. B 95, 024113 (2017)Google Scholar
  25. 25.
    Roy, A., Mukherjee, S., Gupta, R., Auluck, S., Prasad, R., Garg, A.: J. Phys. Condens. Matter. 23, 325902 (2011)CrossRefGoogle Scholar
  26. 26.
    Rahman, G., Jan, H.U.: J. Supercond. Nov. Magn. 31, 405 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Saadi
    • 1
    • 2
    Email author
  • M. Lassri
    • 3
  • R. Moubah
    • 2
  • H. Lassri
    • 2
  • Y. Boughaleb
    • 1
  • M. Abid
    • 4
  • A. Boudali
    • 5
  1. 1.Laboratory of Bio-Geosciences and Materials Engineering, ENS of CasablancaHassan II University of CasablancaCasablancaMorocco
  2. 2.Laboratory of Physics of Materials, Microelectronics, Automatic and Thermal, Faculty of Sciences - Ain ChockHassan II University of CasablancaCasablancaMorocco
  3. 3.Centre Régional des Métiers de l’Education et de Formation (CRMEF) de Marrakech Annexe EssaouiraEssaouiraMorocco
  4. 4.LPTA, Faculty of Sciences - Ain ChockHassan II University of CasablancaCasablancaMorocco
  5. 5.Laboratory of Physico-chemical StudiesUniversity of SaidaSaidaAlgeria

Personalised recommendations