Advertisement

Crystal Structure, Magnetic and Electrical Properties of Half-Doped Chromium Manganite La0.5Sr0.5Mn0.5Cr0.5O3

  • Nabil KallelEmail author
  • Mohamed Hazzez
  • Nejib Ihzaz
Original Paper
  • 34 Downloads

Abstract

Polycrystalline sample La0.5Sr0.5Mn0.5Cr0.5O3 (LSMCO) was prepared by a conventional solid-state reaction method in the air, and its structure was determined by Rietveld refinement using consistent resolution time-of-flight X-ray diffraction. Different structural models have been used for analysis of X-ray diffraction data recorded at room temperature, but the best fits have been found using a mixture of rhombohedral and an orthorhombic structural phases (42(1)%/57(1)%). The rhombohedral, centro-symmetric space group R\( \overline{3} \)c \( \left(\mathrm{No}.167,a\approx \sqrt{2}{a}_p,c\approx 2\sqrt{3}{a}_p,Z=6\right) \) with octahedral tilting scheme aaa leading to a three identical out-of-phase tilt angle of (Mn/Cr)-O6 octahedron along three perovskite main directions: x, y, and z-axes. The orthorhombic space group Pbnm \( \left(\mathrm{No}.62,a\approx b\approx \sqrt{2}{a}_p,c\approx 2{a}_p,Z=4\right) \) with octahedral tilting scheme aac+, leads to an anti-phase tilts of the same magnitude about [100] and [010] directions of the elementary specimen cell and in-phase tilt of different magnitude about the [001] direction. At low temperature 10 K, Rietveld refinement of powder diffraction data revealed that the crystal structure of sample is distorted with a single orthorhombic symmetry (space group Pbnm). Magnetic measurements indicate that our investigated sample exhibits an overall anti-ferromagnetic behavior mainly attributed to the frustration induced by both competing AFM Cr3+-O-Cr3+, Mn4+-O-Mn4+ networks, and the mixed one Mn4+-O-Cr3+exchange magnetic interactions. The temperature dependence of the resistivity measured under zero field shows a semi-conducting behavior in the whole temperature range, which probably could be described by the adiabatic small polaron hoping model with relatively high polaron activation energy.

Keywords

Crystal structure Rietveld analysis Tilt angle Magnetic properties Polaron hoping model 

Notes

References

  1. 1.
    Cowin, P.I., Petit, C.T.G., Lan, R., Irvine, J.T.S., Tao, S.: Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. Adv. Energy Mater. 1, 314–332 (2011)CrossRefGoogle Scholar
  2. 2.
    Armstrong, T.J., Virkar, A.V.: J. Electrochem. Soc. 149, 1565 (2002)CrossRefGoogle Scholar
  3. 3.
    Salje, E., Zhang, H.: Domain boundary engineering. Phase Transit. 82, 452–469 (2009)CrossRefGoogle Scholar
  4. 4.
    Vanitha, P.V., Arulraj, A., Raju, A.R., Rao, C.N.R.: C. R. Acad. Sci., Ser. IIc: Chim. 2, 595 (1999)Google Scholar
  5. 5.
    Maignan, A., Martin, C., Hervieu, M., Raveau, B.: Ferromagnetism and metallicity in the CaMn1−xRuxO3 perovskites: a highly inhomogeneous system. Solid State Commun. 117, 377–382 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Martin, C., Maignan, A., Hervieu, M., Autret, C., Raveau, B., Khomskii, D.I.: Phys. Rev. B. 63, 174402 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Sharma, H., Kumar, D., Tulapurkar, A., Tomy, C.V.: Effect of B-site bismuth doping on magnetic and transport properties of La0.5Ca0.5Mn1−xBixO3 thin films. J. Mater. Sci. 54, 130–138 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    Teng, F., Han, W., Liang, S., Gaugeu, B., Zong, R., Zhu, Y.: Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4. J. Catal. 250, 1–11 (2007)CrossRefGoogle Scholar
  9. 9.
    Shi, L., Yang, H., Zhou, S., Zhao, J., He, L., Zhao, S., Guo, Y., Chen, L.: Influence of annealing atmosphere on the properties of La0.5Sr0.5MnO3. Solid State Commun. 150, 371–374 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Shanga, C., Xiaa, Z.C., Weia, M., Chena, B.R., Jina, Z., Huanga, J.W., Shia, L.R., Ouyang, Z.W., Huang, S.: Dynamical behavior of step-like transition of La0.5Sr0.5Mn1−xTixO3 in a widened field sweep rate. Ceram. Int. 41, 9708–9714 (2015)CrossRefGoogle Scholar
  11. 11.
    Taran, S., Sun, C.P., Huang, C.L., Yang, H.D., Nigam, A.K., Chaudhuri, B.K., Chatterjee, S.: Electrical and magnetic properties of Y-doped La 0.5 Sr 0.5 MnO 3 manganite system: Observation of step-like magnetization. J. Alloys Compd. 644, 363–370 (2015)CrossRefGoogle Scholar
  12. 12.
    Phan, T.-L., Thanh, T.D., Yu, S.C.: Influence of Co doping on the critical behavior of La0.7Sr0.3Mn1−xCoxO3. J. Alloys Compd. 615, S247–S251 (2014)CrossRefGoogle Scholar
  13. 13.
    Millagne, F., de Brion, S., Choteau, G.: Phys. Rev. B. 62, 5619 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Kimura, T., Tomioka, Y., Kumai, R., Okimoto, Y., Tokura, Y.: Diffuse Phase Transition and Phase Separation in Cr-DopedNd1/2Ca1/2MnO3: A Relaxor Ferromagnet. Phys. Rev. Lett. 83, 3940–3943 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    J. Rodriguez-Carvajal, FULLPROF 2000–2005, Laboratoire Leon Briouillon (CEA- CNRS)Google Scholar
  16. 16.
    D. Palmer, Crystal-Maker Software Version 2. 7. 7, Crystal-Maker Software Ltd. (2013)Google Scholar
  17. 17.
    Lufaso, M.W., Woodward, P.M.: Prediction of the crystal structures of perovskites using the software programSPuDS. Acta Cryst. B. 57, 725–738 (2001)CrossRefGoogle Scholar
  18. 18.
    Rao, G.H., Bärner, K., Brown, I.D.: Bond-valence analysis on the structural effects in magnetoresistive manganese perovskites. J. Phys. Condens. Matter. 10, L757–L763 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Battle, P.D., Jones Mat, C.W.: The crystal structure of La 2 NiRuO 6. Res. Bull. 22, 1623–1627 (1987)CrossRefGoogle Scholar
  20. 20.
    Woodward, P.M., Vogt, T., Cox, D.E., Arulraj, A., Rao, C.N.R., Karen, P., Cheetham, A.K.: Influence of Cation Size on the Structural Features of Ln1/2A1/2MnO3Perovskites at Room Temperature. Chem. Mater. 10, 3652–3665 (1998)CrossRefGoogle Scholar
  21. 21.
    Ihzaz, N., Boudard, M., Vincent, H., Oumezzine, M.: Magnetic structure in the segregated phases Nd0.93MnO2.96. J. Alloys Compd. 479(1), 445–450 (2009)CrossRefGoogle Scholar
  22. 22.
    Roth, R.S.: J. Res. Natl. Bur. Stand. 58(2), 75–88 (1957)CrossRefGoogle Scholar
  23. 23.
    Ganesh Bera, V.R., Reddy, P., Rambabu, P.M., Das, P., Mohapatra, N., Padmaja, G., Turpu, G.R.: Triclinic–monoclinic–orthorhombic (T–M–O) structural transitions in phase diagram of FeVO4-CrVO4solid solutions. J. Appl. Phys. 122, 115101 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Glazer, A.M.: The classification of tilted octahedra in perovskites. Acta Crystallogr. B. 28, 3384–3392 (1972)CrossRefGoogle Scholar
  25. 25.
    Glazer, A.M.: Acta Crystallogr. A. 31, 756 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    Alonso, J.A., Martinez-Lope, M.J., Casais, M.T., Aranda, M.A.G., Fernandez-Diaz, M.T.: Metal−Insulator Transitions, Structural and Microstructural Evolution of RNiO3(R = Sm, Eu, Gd, Dy, Ho, Y) Perovskites: Evidence for Room-Temperature Charge Disproportionation in Monoclinic HoNiO3and YNiO3. J. Am. Chem. Soc. 121, 4754–4762 (1999)CrossRefGoogle Scholar
  27. 27.
    Fuertes, V.C., Blanco, M.C., Franco, D.G., Ceppi, S., Sánchez, R.D., Fernández-Díaz, M.T., Tirao, G., Carbonio, R.E.: A new LaCo0.71(1)V0.29(1)O2.97(3)perovskite containing vanadium in octahedral sites: synthesis and structural and magnetic characterization. Dalton Trans. 44, 10721–10727 (2015)CrossRefGoogle Scholar
  28. 28.
    Duran, A., Escamilla, R., Escudero, R., Morales, F., Verdin, E.: Phys. Rev. Mater. 2, 014409 (2018)CrossRefGoogle Scholar
  29. 29.
    Sun, Y., Xu, X., Zhang, Y.: Phys. Rev. B. 63, 054404 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Troyanchuk, I.O., Bushinsky, M.V., Eremenko, V.V., Sirenko, V.A., Szymczak, H.: Low Temp. Phys. 28, 45 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Rivadulla, F., López-Quintela, M.A., Hueso, L.E., Sande, P., Rivas, J., Sánchez, R.D.: Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compoundLa2/3Ca1/3Mn1−xAxO3(A=Co,Cr;x<~0.1). Phys. Rev. B. 62, 5678–5684 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Xiao, X., Yuan, S., Miao, J., Ren, G., Yu, G., Wang, Y., Yin, S.: Tuning colossal magnetoresistance response at roomtemperature by La2/3+ySr1/3−yMn1−yCryO3. Mater. Lett. 61, 2315–2318 (2007)CrossRefGoogle Scholar
  33. 33.
    Cabeza, O., Long, M., Severack, C., Bari, M.A., Muirhead, C.M., Francesconi, M.G., Greaves, C.: Magnetization and resistivity in chromium doped manganites. J. Phys. Condens. Matter. 11, 2569–2578 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Troyanchuk, I.O., Bushinsky, M.V., Eremenko, V.V., Sirenko, V.A., Szymczak, H.: Magnetic phase diagram of the system of manganites Nd0.6Ca0.4(Mn1−xCrx)O3. Low Temp. Phys. 28, 45–48 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Zvezdin, A.K., Matveev, V.M., Mukhin, A.A., Popov, A.I.: Rare-Earth Ions in Magnetically Ordered Crystals [in Russian], p. 296. GFML, Moscow (1985)Google Scholar
  36. 36.
    Kimura, T., Kumai, R., Okimoto, Y., Tomioka, Y., Tokura, Y.: Variation of charge-orbital correlation with Cr doping in manganites. Phys. Rev. B. 62, 15021–15025 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Pi, L., Hébert, S., Yaicle, C., Martin, C., Maignan, A., Raveau, B.: The Pr0.5Ca0.5Mn1 xCrxO3series (0 x 0.5): evidence of steps in the magnetic and transport properties for a narrow composition range. J. Phys. Condens. Matter. 15, 2701–2709 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Moreo, A., Yunoki, S., Dagotto, E.: Phase Separation Scenario for Manganese Oxides and Related Materials. Science. 283, 2034–2040 (1999)CrossRefGoogle Scholar
  39. 39.
    Sun, Y., Tong, W., Xu, X., Zhang, Y.: Phys. Rev. B. 63, 174438 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Fonseca, F.C., Carneio, A.S., Jardim, R.F., O’Brein, J.R., Kimura, T.: J. Appl. Phys. 95, 7085 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Hazzez, M., Ihzaz, N., Boudard, M., Oumezzine, M.: The structural, magnetic and above room temperature magnetocaloric properties of La0.5Sr0.5MnO3 compound. Eur. Phys. J. Plus. 130, 179 (2015)CrossRefGoogle Scholar
  42. 42.
    Kallel, N., Ihzaz, N., Kallel, S., Hagaza, A., Oumezzine, M.: Research on charge-ordering state in La0.5Sr0.5MnO2.88 and La0.5Sr0.5Mn0.5Ti0.5O3 systems. J. Magn. Magn. Mater. 321, 2285–2289 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Hagaza, A., Kallel, N., Kallel, S., Guizouarn, T., Pena, O., Oumezzine, M.: Structural, magnetic and electrical properties of (La0.70−xNdx)Sr0.30Mn0.70Cr0.30O3 with 0≤x≤0.30. J. Alloys Compd. 486, 250–256 (2009)CrossRefGoogle Scholar
  44. 44.
    Ben Abdelkhalek, S., Kallel, N., Kallel, S., Guizouarn, T., Pena, O., Oumezzine, M.: Effect of the simultaneous substitution of two transition metals on the structural, magnetic and electrical properties of La0.6Sr0.4Mn1−2xCrxFexO3. J. Magn. Magn. Mater. 322, 3416–3422 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Singh, S., Singh, D.: Sol–gel synthesis of La0.5Sr0.5Ti0.5Cr0.5–x Fe x O3 perovskites: influence of Fe doping on structural and physical properties. Ionics. 24, 769–776 (2018)CrossRefGoogle Scholar
  46. 46.
    Singh, D., Mahajan, A.: Investigation of structural, magnetic and electric transport properties of half-doped chromium manganites La0.3R0.2Sr0.5Mn0.5Cr0.5O3 (R=La, Nd, Sm, and Gd). Ceram. Int. 41, 11748–11755 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physico-chimie des Matériaux, Département de PhysiqueFaculté des Sciences de MonastirMonastirTunisie
  2. 2.Institut Supérieur des Sciences Appliquées et de Technologie de SousseUniversité de SousseSousseTunisie

Personalised recommendations