Advertisement

Structural, Bulk Permittivity, and Magnetic Properties of Lead-Free Electronic Material: Ba1Bi1Cu1Fe1Ni1Ti3O12

  • Madhusmita SahuEmail author
  • Sugato Hajra
  • R. N. P. Choudhary
Original Paper
  • 16 Downloads

Abstract

In this report, Ba1Bi1Cu1Fe1Ni1Ti3O12 (BBCFNTO termed further) ceramics were synthesized using a conventional ceramic processing route. The formation of multiple phases has been confirmed from by the XRD pattern at room temperature. The surface micrograph indicates the uniform distribution of grains with distinct grain boundary. The co-relation between the impedance and dielectric parameters was realized by using a phase sensitive meter over a good temperature and frequency range. The temperature- and frequency-dependent dielectric properties are linked to the conduction mechanism. The dielectric constant (K) and loss (tanδ) are increased sharply at high-temperature region, which is expected to be the onset of dipolar relaxation phenomena. The contribution of grain boundary (GBs) and grain (Gs) effects can be identified using the complex impedance spectroscopy. This synthesized material is investigated to model multifunctional devices.

Keywords

Electronic material Impedance Conductivity Magnetic 

Notes

Acknowledgments

MS would like to give thanks to Dr. Arijeet Mitra, IOP, Bhubaneswar who carried out some experiments.

Authors’ Contributions

Miss M Sahu fabricated the sample and done the electrical characterization. Mr. Sugato has prepared draft. Dr. RNP Choudhary supervised the work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Y.K Hong, J.J. Lee, Magnetic supercapacitors, US Patent, US 2015/0179345 A1, (2015)Google Scholar
  2. 2.
    Subramanian, M.A., Li, D., Duan, N., Reisnet, B.A., Sleight, A.W.: High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid St. Chem. 151, 323–325 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high-dielectric-constant perovskite-related oxide. Science. 27, 673 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Schmidt, R., Stennett, M.C., Hyatt, N.C., Pokorny, J., Prado-Gonjal, J., Li, M., Sinclair, D.C.: Effects of sintering temperature on the internal barrier layercapacitor (IBLC) structure in Ca1Cu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)CrossRefGoogle Scholar
  5. 5.
    Dong, W., Hu, W., Berlie, A., Lau, K., Chen, H., Withers, R.L., Liu, Y.: Colossal dielectric behavior of Ga + Nb co-doped rutile TiO2. ACS Applied Materials &Interfaces. 7, 25321–25325 (2015)CrossRefGoogle Scholar
  6. 6.
    Ribeiro, W.C., Joanni, E., Savu, R., Bueno, P.R.: Nanoscale effects and polaronic relaxation in compounds. Solid State Commun. 151, 173–176 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Nachaithong, T., Thongbai, P., Maensiri, S.: Colossal permittivity in(In1/2Nb1/2)xTi1-xO2 ceramics prepared by a glycine nitrate process. J. Eur.Ceram. Soc. 37, 655–660 (2017)CrossRefGoogle Scholar
  8. 8.
    Sahu, M., Choudhary, R.N.P., Das, S., Otta, S., Roul, B.K.: Inter-grain mediated intrinsic and extrinsic barrier layer network mechanism involved in Ca1Cu3Ti4O12 bulk ceramic. J. Mat. Science: Materials in Electronics. 28, 15676–15684 (2017)Google Scholar
  9. 9.
    T. Priyatham, Ranjit Bauri, Synthesis and characterization of nanocrystalline Ni–YSZ cermet anode for SOFC, 61, 54–58, (2010)Google Scholar
  10. 10.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Development of lead-free multifunctional materials Bi(Co0.45Ti0.45Fe0.10)O3 , 28, 308–314, (2018)Google Scholar
  11. 11.
    S Nath, S K Barick, S Hajra, RNP Choudhary, Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2)(Fe2/3Mo1/3)O3 electroceramics, J. Mater. Sci. Mater. Electron. 29: 12251–12257 (2018)Google Scholar
  12. 12.
    Purohit, V., Padhee, R., Choudhary, R.N.P.: Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic. Ceram. Int. 44, 3993–3999 (2018)CrossRefGoogle Scholar
  13. 13.
    Shaw, T.M., Trolier-McKinstry, S., McIntrye, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Arlt, G.: The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics. 104, 217–227 (1990)CrossRefGoogle Scholar
  15. 15.
    Mudinepalli, V.R., Feng, L., Lin, W.-C., Murthy, B.S.: Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. Journal of Advanced Ceramics. 4, 46–53 (2015)CrossRefGoogle Scholar
  16. 16.
    A. K, S., Dutta, D.P., Roy, M., V.D, S.: Magnetic and dielectric properties of NiCrFeO4 prepared by solution combustion method. Mater. Res. Bull. 94, 154–159 (2017)CrossRefGoogle Scholar
  17. 17.
    Koop, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)ADSCrossRefGoogle Scholar
  18. 18.
    Pawar, R.P., Puri, V.: Structural, electrical and dielectric properties of (Sr1−xCax) · MnO3 (0 ≤ x ≤ 1.0) ceramics. Ceram. Int. 40, 10423–10430 (2014)CrossRefGoogle Scholar
  19. 19.
    Jonscher, A.K.: The ‘universal’ dielectric response. Nature. 267, 673–679 (1977)ADSCrossRefGoogle Scholar
  20. 20.
    Behera, B., Nayak, P., Choudhary, R.N.P.: Structural and impedance properties of KBa2V5O15 ceramics. Mat. Res. Bull. 43, 401–410 (2008)CrossRefGoogle Scholar
  21. 21.
    Sen, S., Choudhary, R.N.P.: Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87, 256–263 (2004)CrossRefGoogle Scholar
  22. 22.
    Brahma, S., Choudhary, R.N.P., Thakur, A.K.: AC impedance analysis of LaLiMo2O8 electroceramics. Phys. B. 355, 188–201 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Ganguly, P., Devi, S., Jha, A.K., Deori, K.L.: Dielectric and pyroelectric studies of tungsten-bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Ferroelectrics. 381, 111–119 (2009)CrossRefGoogle Scholar
  24. 24.
    Karoui, K., Ben Rhaiem, A., Guidara, K.: Dielectric properties and relaxation behavior of [TMA]2Zn0.5Cu0.5Cl4 compound. Physica B. 407, 489–493 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Jayswal, M.S., Kanchan, D.K., Sharma, P., Gondaliya, N.: Relaxation process in PbI2–Ag2 O–V2O5–B2O3 system: dielectric, AC conductivity and modulus studies. Mater. Sci. Eng. B. 178, 775–784 (2013)CrossRefGoogle Scholar
  26. 26.
    Adnan, S.B.R.S., Mohamed, N.S.: Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte. Solid State Ionics. 262, 559–562 (2014)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Shi, D., Zheng, S., Huang, Y., Wu, S., Li, Y., Fang, L., Hu, C.: Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater Chem Phy. 139, 3844–3850 (2013)CrossRefGoogle Scholar
  28. 28.
    Huang, Y., Liu, L., Shi, D., Wu, S.S., Zheng, S., Fang, L., Hu, C., Elouadid, B.: Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int. 39, 6063–6068 (2013)CrossRefGoogle Scholar
  29. 29.
    Sahu, M., Hajra, S., Choudhary, R.N.P.: Structural, electrical and dielectric characteristics of strontium-modified CaCu3Ti4O12. SN Applied Sciences. 1(13), (2019)Google Scholar
  30. 30.
    Wang, B., Gong, L., Ma, G., Wang, S., Zhou, Z.: Investigation on modified BiFeO3—based perovskite ceramics. J. Appl. Ceram. Technol. 12, 157–162 (2015)CrossRefGoogle Scholar
  31. 31.
    Liu, X.H., Xu, Z., Wei, X.Y., Yao, X.: Characterization of 0.7Bi(Fe0.9Cr0.1)O3–0.2PbTiO3–0.1BaTiO3 multiferroic ceramics derived from sol–gel. J. Am. Ceramic. Soc. 93, 1245–1247 (2010)Google Scholar
  32. 32.
    Islam, M.R., Islam, M.S., Zubair, M.A., Usama, H.M., Azam, M.S., Sharif, A.: Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J. Alloys Compd. 735, 2584–2596 (2018)CrossRefGoogle Scholar
  33. 33.
    Shafi, K.V.P., Gedanken, A., Prozorov, R., Balogh, J.: Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem. Mater. 10, 3445–3450 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multifunctional and Advance Materials Laboratory, Department of PhysicsSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia
  2. 2.Department of Electronics and InstrumentationSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations