Effects of Sintering Temperature on Microstructural, Magnetic, and Impedance Spectroscopic Properties of Ni0.4Cd0.3Zn0.3Fe2O4 Ferrites

  • Nesrine Mechi
  • Abdulrahman Mallah
  • Sobhi Hcini
  • Mohamed Lamjed BouaziziEmail author
  • Michel Boudard
  • Abdessalem Dhahri
Original Paper


Ni0.4Cd0.3Zn0.3Fe2O4 ferrites have been prepared through the use of sol-gel method at 900 °C and 1100 °C. Rietveld refinements of XRD patterns indicate that the prepared samples crystallize in the cubic spinel structure. Lattice constant and grain size are found to increase with sintering temperature. Magnetic measurements show that the maximum magnetization (Ms) rises, whereas both coercivity (Hc) and remanence (Mr) decrease when increasing the sintering temperature. Frequency and temperature dependence of electrical conductivity, electrical modulus, and electrical impedance have been studied using impedance spectroscopy technique. As the sintering temperature increases, the conductivity of the samples increases. The variation of imaginary part of modulus (M″) displays the presence of an electrical relaxation phenomenon and non-Debye nature. Nyquist representations have been analyzed using an electrical equivalent circuit. The obtained results reveal that the conduction mechanism of the samples is achieved basically of the grain boundary contribution.


Ferrites Sol-gel method Rietveld refinement Hysteresis loops Electrical properties 


Funding Information

This work was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research Project Number 2017/01/7373.


  1. 1.
    Meng, Y.Y., Liu, Z.W., Dai, H.C., Yu, H.Y., Zeng, D.C., Shukla, S., et al.: Powder Technol. 229, 270 (2012)CrossRefGoogle Scholar
  2. 2.
    Igarash, H., Okazaki, K.: J. Am. Ceram. Soc. 60, 51 (1977)CrossRefGoogle Scholar
  3. 3.
    Kulikowski, K.: J. Magn. Magn. Mater. 41, 56 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Mangalaraj, R.V., Ananthakumar, S., Manohar, P., Gnanam, F.D.: Mater. Lett. 57, 1151 (2003)CrossRefGoogle Scholar
  5. 5.
    Anwar, M.S., Ahmed, F., Koo, B.H.: Acta Mater. 71, 100 (2014)CrossRefGoogle Scholar
  6. 6.
    Costa, A.C.F.M., Morelli, M.R., Kiminami, R.H.G.A.: J. Mater. Sci. 42, 779 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Gao, P., Hua, X., Degirmenci, V., Rooney, D., Khraisheh, M., Pollard, R., Bowman, R.M., Rebrov, E.V.: J. Magn. Magn. Mater. 348, 44 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Raghavender, A.T., Biliškov, N., Skoko, Ž.: Mater. Lett. 65, 677 (2011)CrossRefGoogle Scholar
  9. 9.
    Ghasemi, A.: J. Magn. Magn. Mater. 360, 41 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Babu, B.R., Prasad, B.B.V.S.V., Prasad, M.S.R.: Mod. Phys. Lett. B. 28, 1450244 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Mallapur, M.M., Shaikh, P.A., Kambale, R.C., Jamadar, H.V., Mahamuni, P.U., Chougule, B.K.: J. Alloys Compd. 479, 797 (2009)CrossRefGoogle Scholar
  12. 12.
    Gawas, U.B., Kothawale, M.M., Pednekar, R., Meena, S.S., Prasad, N.K., Alla, S.K.: J. Supercond. Nov. Magn. 30, 1287 (2017)CrossRefGoogle Scholar
  13. 13.
    Patil, M.R., Rendale, M.K., Mathad, S.N., Pujar, R.B.: Int. J Self-Propag. High-Temp. Synth. 24, 241 (2015)CrossRefGoogle Scholar
  14. 14.
    Patil, M.R., Rendale, M.K., Mathad, S.N., Pujar Inorg, R.B.: Nano-Met. Chem. 47, 1145 (2017)Google Scholar
  15. 15.
    Rietveld, H.M.: J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  16. 16.
    Hakim, M.A., Nath, S.K., Sikder, S.S., Maria, K.H.: J. Phys. Chem. Solids. 74, 1316 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Lohar, K.S., Patange, S.M., Mane, M.L., Shirsath, S.E.: J. Mol. Struct. 1032, 105 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Patil, R.P., Hankare, P.P., Garadkar, K.M., Sasikala, R.: J. Alloys Compd. 523, 66 (2012)CrossRefGoogle Scholar
  19. 19.
    Rahimi, M., Kameli, P., Ranjbar, M., Salamati, H.: J. Nanopart. Res. 15, 1865 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Pailhé, N., Wattiaux, A., Gaudon, M., Demourgues, A.: J. Solid State Chem. 181, 1040 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Verma, K., Kumar, A.: D. Varshney. J. Alloys Compd. 526, 91 (2012)CrossRefGoogle Scholar
  22. 22.
    Birajdar, A.A., Shirsath, S.E., Kadam, R.H., Mane, M.L., Mane, D.R., Shitre, A.R.: J. Appl. Phys. 112, 053908 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Shannon, R.D.: Acta Crystallogr. A. 32, 751 (1976)ADSCrossRefGoogle Scholar
  24. 24.
    Shelar, M.B., Jadhav, P.A., Patil, D.R., Chougule, B.K., Puri, V.: J. Magn. Magn. Mater. 322, 3355 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Ahmed, M.A., Afify, H.H., El Zawawia, I.K., Azab, A.A.: J. Magn. Magn. Mater. 324, 2199 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Hcini, S., Zemni, S., Triki, A., Rahmouni, H., Boudard, M.: J. Alloys Compd. 509(5), 1394Google Scholar
  27. 27.
    Shokrollahi, H., Janghorban, K.: J. Mater. Process. Tech. 189, 1 (2007)CrossRefGoogle Scholar
  28. 28.
    Birajdar, A.A., Shirsath, S.E., Kadam, R.H., Patange, S.M., Lohar, K.S., d Mane, D.R., Shitre, A.R.: J. Alloys Compd. 512, 316 (2012)CrossRefGoogle Scholar
  29. 29.
    Nikumbh, A.K., Nagawade, A.V., Gugale, G.S., Chaskar, M.G., Bakare, P.P.: J. Mater. Sci. 37, 637 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Ahmed, Y.M.Z.: Ceram. Int. 36, 969 (2010)CrossRefGoogle Scholar
  31. 31.
    Waje, S.B., Hashim, M., Ismail, I.: J. Magn. Magn. Mater. 323, 1433 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Maaz, K., Karim, S., Mumtaz, A., Hasanain, S.K., Liu, J., Duan, J.L.: J. Magn. Magn. Mater. 321, 1838 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Artus, M., Tahar, L.B., Herbst, F., Smiri, L., Villain, F., Yaacoub, N., Grenèche, J.M., Ammar, S., Fiévet, F.: J. Phys. Condens. Matter. 23, 506001 (2011)CrossRefGoogle Scholar
  34. 34.
    Ortega, N., Kumar, A., Bhattacharya, P., Majumder, S.B., Katiyar, R.S.: Phys. Rev. B. 77, 014111 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Funke, K.: Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  36. 36.
    Dhaou, M.H., Hcini, S., Mallah, A., Bouazizi, M.L., Jemni, A.: Appl. Phys. A Mater. Sci. Process. 123, 8 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Selmi, A., Hcini, S., Rahmouni, H., Omri, A., Bouazizi, M.L., Dhahri, A.: Phase Transit. 90, 942 (2017)CrossRefGoogle Scholar
  38. 38.
    Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Curr. Appl. Phys. 9, 1072 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Mandal, S.K., Singh, S., Dey, P., Roy, J.N., Mandal, P.R., Nath, T.K.: J. Alloys Compd. 656, 887 (2016)CrossRefGoogle Scholar
  40. 40.
    Sutka, A., Lagzdina, S., Mezinskis, G., Pludons, A., Vitina, I., Timma, L.: IOP Conf. Ser.: Mater. Sci. Eng. 25, 012019 (2011)CrossRefGoogle Scholar
  41. 41.
    Prasad, M.S.R., Ramesh, K.V., Babu, B.R., Trinath, K.: Indian J. Phys. 90, 417 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Humaira, A., Asghari, M., Phys, J.: Conf. Ser. 439, 012014 (2013)CrossRefGoogle Scholar
  43. 43.
    Bhukal, S., Mor, S., Bansal, S., Singh, J., Singhal, S.: J. Mol. Struct. 1071, 95 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Bhukal, S., Namgyal, T., Mor, S., Bansal, S., Singhal, S.: J. Mol. Struct. 1012, 162 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Vasoya, N.H., Jha, P.K., Saija, K.G., Dolia, S.N., Zankat, K.B., Modi, K.B.: J. Electron. Mater. 45, 917 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Saha, S., Sinha, T.P.: Phys. Rev. B. 65, 1341 (2005)Google Scholar
  47. 47.
    Padmasree, K.P., Kanchan, D.D., Kulkami, A.R.: Solid State Ionics. 177, 475 (2006)CrossRefGoogle Scholar
  48. 48.
    Bergman, R.: J. Appl. Phys. 88, 1356 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    Rao, K.S., Krishna, P.M., Prasad, D.M., Gangadharudu, D.: J. Mater. Sci. 42, 4801 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Sivakumar, N., Narayanasamy, A., Chinnasamy, C.N., Jeyadevan, B.: J. Phys. Condens. Matter. 19, 386201 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Singh, N., Agarwal, A., Sanghi, S.: Curr. Appl. Phys. 11, 783 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Batoo, K.M.: Physica B. 406, 382 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Nesrine Mechi
    • 1
  • Abdulrahman Mallah
    • 2
  • Sobhi Hcini
    • 1
  • Mohamed Lamjed Bouazizi
    • 3
    Email author
  • Michel Boudard
    • 4
  • Abdessalem Dhahri
    • 5
    • 6
  1. 1.Faculty of Science and Technology of Sidi BouzidUniversity of KairouanSidi BouzidTunisia
  2. 2.Department of Chemistry, College of ScienceQassim UniversityBuraydahSaudi Arabia
  3. 3.College of EngineeringPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
  4. 4.LMGP, CNRSUniversity of Grenoble AlpesGrenobleFrance
  5. 5.Faculty of Sciences of Monastir, Department of Physics, Laboratory of Physical Chemistry of MaterialsUniversity of MonastirMonastirTunisia
  6. 6.Al-Qunfudah University CollegeUmm Al-Qura UniversityAl-QunfudahSaudi Arabia

Personalised recommendations