Effect of Post-Annealing on the Phase Transformation and Critical Current Density of (Bi, Pb)-2223/AgAu Tapes

  • Xiaobo Ma
  • Shengnan ZhangEmail author
  • Pingxiang ZhangEmail author
  • Chengshan Li
  • Guoqing Liu
  • Zeming Yu
  • Jinshan Li
Original Paper


During the sintering process of Ag-alloy sheathed Bi-2223 tapes, post-annealing (PA) played an important role on the final current capacity by forming a Pb-rich phase named (Pb,Bi)3Sr2Ca2CuOx (3221) and healing the cracks. Due to the different oxygen penetration rate between AgAu alloy and pure Ag, which is traditionally used in other Bi-2223 tapes, the influence of PA parameters on the 3221 phase content, microstructures, and current capacity of AgAu tapes should be systematically studied. In this study, PA processes with different temperatures of 770–800 °C have been performed on fully reacted 37-filamentary (Bi, Pb)-2223/AgAu tapes in the atmosphere of 7.5% O2 balanced with Ar. It is found that the 3221 phase appeared after PA with its amount first increasing then decreasing with increasing PA temperature. The critical temperature Tc and peak temperature (Tp) obtained with AC susceptibility measurement both increased with increasing PA temperature, and reached the maximum value at 780 °C then decreased with increasing PA temperature. Due to the improvement of Tc and intergrain connectivity, the critical current density (Jc) increased by 24% after PA at 780 °C. Meanwhile, the 3221 phase formation mechanism has also been systematically discussed by varying the amount of remnant liquid in tapes in HT1 process.


Bi-2223/AgAu tapes Post-annealing method Pb-rich phase Intergrain connectivity 


Funding Information

This study was financially supported National Key Project of Magneto-Constrained Fusion Energy Development Program under Grant No. 2015GB115001, Science and Technology Plan of Weiyang District, Xi’an No. 201904, Key International Cooperation Project in Shaanxi Province No. 2019KWZ-04, and National Key Research and Development Program No. 2017YFB0902303.


  1. 1.
    Hayashi, K.: Jpn. J. Appl. Phys. 50, 080001 (2011)ADSGoogle Scholar
  2. 2.
    Kagiyama, T., Yamazaki, K., Kikuchi, M., Yamade, S., Nakashima, T., Kobayashi, S., Hayashi, K.: IOP Conf. Ser.: Mater. Sci. Eng. 18, 152001 (2011)Google Scholar
  3. 3.
    Osabe, G., Ayai, N., Kikuchi, M., Tatamidani, K., Nakashima, T.: Physica C. 470, 1365 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Nakashima, S., Manabu, S., Inada R , Nakamura Y., Oota, A.: Physica C. 426–431,1149 (2005)Google Scholar
  5. 5.
    Lu, X.Y., Watanabe, K., Yi, D., Chen, H., Nagata, A.: Physica C. 471,1090 (2011)Google Scholar
  6. 6.
    Shalaby, M.S., Hashem, H.M., Hammad, T.R., Wahab, L.A., Marzouk, K.H., Soltan, S.: J. Radi. Res. Appl. Sci. 9, 345 (2016)Google Scholar
  7. 7.
    Zelati, A., Amirabadizadeh, A., Kompany, A.: J. Supercond. Nov. Magn. 27, 2185 (2014)CrossRefGoogle Scholar
  8. 8.
    Matsushita, T., Himeda, Y., Kiuchi, M.: Supercond. Sci. Technol. 19, 1110 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Fujishiro, H., Ikebe, M., Noto, K.: IEEE Trans. Appl. Supercond. 30, 1645 (1994)Google Scholar
  10. 10.
    Yi, H.P., Song, X.H., Liu, L., Liu, R., Kang, W.: Physica C. 426-431, 1176 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Suzuki, T., Yumoto, K., Mamiya, M., Hasegawa, M., Takei, H.: Physica C. 301, 173 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Kim, W.J., Kwon, S.C., Lee, H.G., Hong, G.W., Kuk, H.-I.I.: Supercond. Sci. Technol. 10, 250 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Marti, F., Grasso, G., Grivel, J.C., Flukiger, R.: Supercond. Sci. Technol. 11, 485 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Li, M.Y., Chen, X.P., Qu, T.M., Yi, H.P., Han, Z., Liu, Q.: Physica C. 412–414, 1091 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Jiang, J., Cai, X.Y., Chandler, J.G., Patnaik, S., Polyanskii, A.A., Yuan, Y., Hellstrom, E.E., Larbalestier, D.C.: IEEE T. Appl. Supercon. 13, 3018 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Yuan, Y., Jiang, J., Cai, X.Y., Larbalestier, D.C., Hellstrom, E.E.: Appl. Phys. Lett. 84, 2127 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Kobayashi, S., Yamazaki, K., Kato, T., Ohkura, K., Fujino, K., Fujikami, J., Ueno, E., Ayai, N., Kikuchi, M., Hayashi, K., Sato, K., Hata, R.: Physica C. 426–431, 1132 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Ma, X. B., Zhang, S. N., Yu, Z. M., Liu, G. Q, Li, C. S., Li, J. S., Zhang, P. X.: J. Supercond. Nov. Magn. 32, 2391 (2019)Google Scholar
  19. 19.
    Chen, X.P., Li, M.Y., Qu, T.M., Liu, Q., Han, Z.: Supercond. Sci. Technol. 16, 1162 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Salamati, H., Kameli, P.: Physica C. 403, 60(2004)Google Scholar
  21. 21.
    Gul, I. H., Amin, F., Abbasi, A. Z., Anis-ur-Rehman, M., Maqsood, A.: Physica C. 449, 139(2006)Google Scholar
  22. 22.
    Mihalache, V., Deac, I. G., Pop, A. V., Miu, L.: Current Applied Physics. 11, 1010(2011)ADSCrossRefGoogle Scholar
  23. 23.
    Kameli, P., Salamati, H., Eslami, M.: Solid State Commun. 137, 30(2006)Google Scholar
  24. 24.
    Qu, T.M., Han, Z., Flukiger, R.: Physica C. 444, 71(2006)Google Scholar
  25. 25.
    Flukiger, R., Grasso, G., Grivel, J.C., Marti, F., Dhalle, M., Huang, Y.: Supercond. Sci. Tech. 10, A68 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Li, M.Y., Chen, X.P., Qu, T.M., Liu, Q., Han, Z.: Physica C. 411, 35(2004)Google Scholar
  27. 27.
    Jeremie, A., Alami, Y.K., Grivel, J.C., Flukiger, R.: Supercond.Sci. Tech. 6, 730 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Northwest Institute for Nonferrous Metal Research (NIN)Xi’anChina

Personalised recommendations