Signatures of Filamentary Superconductivity up to 94 K in Tungsten Oxide WO2.90

  • A. ShengelayaEmail author
  • K. Conder
  • K. A. Müller


We report results of the search for possible superconducting state in tungsten oxides WO3−x with various oxygen deficiency 0 < x < 1. In samples with one particular composition WO2.9, the signatures of superconductivity with the same transition temperature Tc = 80 K were registered by means of magnetization measurements. By lithium intercalation, the Tc was further increased to 94 K. The observed small superconducting fraction and the absence of clear transition in resistivity measurements indicate that the superconductivity is localized in small regions which do not percolate. Electron Paramagnetic Resonance experiments showed the presence of W5+ − W5+ electron bipolarons in reduced tungsten oxide samples. It is proposed that such bipolarons form and cluster within crystallographic shear planes which exist in the Magnéli phase of WO2.9 (W20O58) and represent charge-carrier rich quasi-1D stripes or puddles. When decreasing temperature, superconducting state can be established locally in such regions similar to cuprates. The obtained results demonstrate that the Magnéli-type tungsten oxides are promising materials to explore high-temperature superconductivity above liquid nitrogen temperature.



We thank H. Keller for his support and interest during this work. We also thank R. Khasanov and F. La Mattina for assistance during the ac susceptibility and EPR measurements. Valuable discussions with A. Bishop, A. Bussmann-Holder, J. Purans and Z. Guguchia are gratefully acknowledged.

Funding Information

This work was supported by the Shota Rustavely National Science Foundation of Georgia under grant no. STCU 2017_29.


  1. 1.
    Bednorz, J.G., Müller, K.A.: Z Phys B. 64, 189 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P., Kortan, A.R.: Nature. 350, 600 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature. 410, 63 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J Am Chem Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  5. 5.
    Reich, S., Tsabba, Y.: Eur Phys J B. 9, 1 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Shengelaya, A., Müller, K.A.: J Supercond Nov Magn. 32, 3 (2019)CrossRefGoogle Scholar
  7. 7.
    Sahle, W., Nygren, M.: J Solid State Chem. 48, 15 (1983)CrossRefGoogle Scholar
  8. 8.
    Wu, C.-M., Naseem, S., Chou, M.-H., Wang, J.-H., Jian, Y.-Q.: Front Mater. 6, 49 (2019)CrossRefGoogle Scholar
  9. 9.
    Yan, J., Wang, T., Wu, G., Dai, W., Guan, N., Li, L.: Adv Mater. 27, 1580 (2015)CrossRefGoogle Scholar
  10. 10.
    Kieslich, G., Cerretti, G., Veremchuk, I., Hermann, R.P., Panthöfer, M., Grin, J., Tremel, W.: Phys Status Solidi A. 213, 808 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Aird, A., Salje, E.K.H.: J Phys Condens Matter. 10, L377 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Kopelevich, Y., da Silva, R.R., Camargo, B.C.: Physica C. 514, 237 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Schlenker, C., Dumas, J., Escribe-filippini, C., Guyot, H., Marcus, J., Fourcaudot, G.: Philos Mag B. 52, 643 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    Bursill, L.A., Hyde, B.G.: J Solid State Chem. 4, 430 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    Magnéli, A.: Arkiv Kemi. 1, 223 (1949)Google Scholar
  16. 16.
    Magnéli, A., Blomberg-Hansson, B., Kihlborg, L., Sundkvist, G.: Acta Chem Scand. 9, 1382 (1955)CrossRefGoogle Scholar
  17. 17.
    Marucco, J.-F., Gerdanian, P., Dodé, M.: J Chim Phys. 66, 674 (1969)CrossRefGoogle Scholar
  18. 18.
    Salje, E.K.H.: Eur J Solid State Inorg Chem. 31, 805 (1994)Google Scholar
  19. 19.
    Schirmer, O.F., Salje, E.: J Phys C. 13, 1067 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    Gazzinelli, R., Schirmer, O.F.: J Phys C. 10, L145 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    Salje, E., Hoppmann, G.: Philos Mag B. 43, 105 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    Bensebaa, F., Xiang, B., Kevan, L.: J Phys Chem. 96, 6118 (1992)CrossRefGoogle Scholar
  23. 23.
    Yoshimatsu, K., Sakata, O., Ohtomo, A.: Sci Rep. 7, 12544 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsTbilisi State UniversityTbilisiGeorgia
  2. 2.Andronikashvili Institute of PhysicsIvane Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  3. 3.Laboratory for Multiscale Materials ExperimentsPaul Scherrer InstituteVilligen PSISwitzerland
  4. 4.IBM Research – ZürichRüschlikonSwitzerland

Personalised recommendations