Advertisement

The Quest for High(er) Tc in BaBiO3-Based Heterostructures

  • Ivan Božović
  • Xi He
  • Anthony T. BollingerEmail author
  • Myung-Guan Han
  • Yimei Zhu
Original Paper
  • 54 Downloads

Abstract

Almost all known superconductors with high Tc have layered structure and are quasi two-dimensional (2D) electronically. Among those that are not, hole-doped BaBiO3 has the highest Tc (and also the highest among all oxides other than cuprates). Coincidentally, Bi is a valence-skipping element and a natural candidate for a negative-U center, with the potential of enhancing superconductivity, as often pointed out by Ted Geballe. With this motivation, we have been trying to synthesize quasi-2D embodiments of BaBiO3. The technique we use is atomic-layer-by-layer molecular beam epitaxy (ALL-MBE), which allows for “digital” synthesis of atomically precise heterostructures and superlattices. We have succeeded in synthesizing some novel, artificial, metastable, layered compounds such as Ba3Bi2LaO9. So far, neither has shown superconductivity, but we will persist in trying.

Keywords

Barium bismuthate Molecular beam epitaxy Atomic-layer engineering Metastable compounds 

Notes

Funding Information

The research at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. X.H. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4410.

References

  1. 1.
    Sleight, A.W., Gillson, J.L., Bierstedt, P.E.: High-temperature superconductivity in the BaPb1-xBixO3 system. Solid State Commun. 17, 27–28 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    Mattheiss, L.F., Gyorgy, E.M., Johnson Jr., D.W.: Superconductivity above 20 K in the Ba–K–Bi-O system. Phys. Rev. B. 37, 3745–3746 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Cava, R.J., Batlogg, B., Krajewski, J.J., Farrow, R.C., Rupp, L.W., White, A.E., Short, K.T., Peck, W.F., Kometani, T.Y.: Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature. 332, 814–816 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    White, R.M., Geballe, T.H.: Long range order in solids. Academic Press (1979)Google Scholar
  5. 5.
    Eagles, D.M.: Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Leggett, A.J.: Diatomic molecules and cooper pairs. Springer, Berlin Heidelberg (1980)CrossRefGoogle Scholar
  7. 7.
    Nozières, P., Schmitt-Rink, S.: Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Chen, Q., Stajic, J., Tan, S., Levin, K.: BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Randeria, M., Taylor, E.: Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation and the Unitary Fermi Gas. Ann. Rev. Condens. Matter Phys. 5, 209–232 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Greiner, M., Regal, C.A., Jin, D.S.: Emergence of a molecular Bose–Einstein condensate from a Fermi gas. Nature. 426, 537–540 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Micnas, R., Ranninger, J., Robaszkiewicz, S.: Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Matsushita, Y., Bluhm, H., Geballe, T.H., Fisher, I.R.: Evidence for charge Kondo effect in superconducting Tl-doped PbTe. Phys. Rev. Lett. 94, 157002 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Sommer, A.T., Cheuk, L.W., Ku, M.J.H., Bakr, W.S., Zwierlein, M.W.: Evolution of Fermion pairing from three to two dimensions. Phys. Rev. Lett. 108, 045302 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Hellman, E.S., Hartford Jr., E.H.: Normal state resistivity and Hall effect in Ba1-xKxBiO3 epitaxial films. Phys. Rev. B. 47, 11346 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Hellman, E.S., Hartford Jr., E.H.: Evidence for two-particle normal-state tunneling in Ba1-xKxBiO3 native-barrier tunnel junctions. Phys. Rev. B. 52, 6822–6828 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Blank, D.H.A., Hilgenkamp, H., Brinkman, A., Mijatovic, D., Rijnders, G., Rogalla, H.: Superconducting Mg-B films by pulsed-laser deposition in an in-situ two-step process using multicomponent targets. Appl. Phys. Lett. 79, 394–396 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Mijatovic, D., Rijnders, G., Hilgenkamp, H., Blank, D.H.A., Rogalla, H.: Growth studies of Ba1-xKxBiO3-δ thin films by pulsed-laser deposition. Physica C. 372-376, 596–599 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Harris, D.T., Campbell, N., Uecker, R., Brützam, M., Schlom, D.G., Levchenko, A., Rzchowski, M.S., Eom, C.-B.: Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb1-xBixO3 thin films. Phys. Rev. Mater. 2, 041801 (2018)CrossRefGoogle Scholar
  19. 19.
    Gozar, A., Logvenov, G., Butko, V., Bozovic, I.: Surface structure analysis of atomically smooth BaBiO3. Phys. Rev. B. 75, 201402 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Bozovic, I.: Atomic-layer engineering of superconducting oxides: yesterday, today, tomorrow. IEEE Trans. Appl. Superconduct. 11, 2686–2695 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    Bozovic, I., et al.: Epitaxial strain and superconductivity in La2-xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001–107004 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Gedik, N., Yang, D.-S., Logvenov, G., Bozovic, I., Zewail, A.: Non-equilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science. 316, 425 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Dean, M.P.M., et al.: Persistence of magnetic excitations in La2−xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nat. Mater. 12, 1019–1023 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of critical temperature in overdoped copper oxides on superfluid density. Nature. 536, 309–311 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Wu, J., Bollinger, A.T., He, X., Božović, I.: Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature. 547, 432–436 (2017)CrossRefGoogle Scholar
  26. 26.
    Giraldo-Gallo, P., et al.: Scale invariant magnetoresistance in the strange metal phase of a cuprate superconductor. Science. 361, 479–481 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Mahmood, F., He, X., Božović, I., Armitage, N.P.: Locating the missing superconducting electrons in overdoped cuprates. Phys. Rev. Lett. 122, 027003 (2019)ADSCrossRefGoogle Scholar
  28. 28.
    Bozovic, I., et al.: No mixing of superconductivity and anti-ferromagnetism in a high critical-temperature superconductor. Nature. 422, 873–875 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Gozar, A., Logvenov, G., Fitting Kourkoutis, L., Bollinger, A.T., Giannuzzi, L.A., Muller, D.A., Bozovic, I.: Interface superconductivity between a metal and a Mott insulator. Nature. 455, 782–785 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Logvenov, G., Gozar, A., Bozovic, I.: High-temperature superconductivity in a single copper-oxygen plane. Science. 326, 699–702 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Smadici, S., et al.: Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-Ray scattering. Phys. Rev. Lett. 102, 107004 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Bozovic, I.: Superconductor–insulator transition in La2-xSrxCuO4 at the pair quantum resistance. Nature. 472, 458–460 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Dean, M.P.M., et al.: Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Wu, J., et al.: Anomalous independence of interface superconductivity on carrier density. Nat. Mater. 12, 877–881 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Zhou, P., Chen, L., Liu, Y., Sochnikov, I., Bollinger, A.T., Han, M.-G., Zhu, Y., He, X., Boz̆ović, I., Natelson, D.: Electron pairing in the pseudogap state revealed by shot noise in copper-oxide junctions. Nature. 572, 493–496 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    Bhattacharya, A., Zhai, X., Warusawithana, M., Eckstein, J.N., Bader, S.D.: Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3)m/(SrMnO3)2m. Appl. Phys. Lett. 90, 222503 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Giraldo-Gallo, P., Lee, H., Zhang, Y., Kramer, M.J., Beasley, M.R., Geballe, T.H., Fisher, I.R.: Field-tuned superconductor-insulator transition in BaPb1-xBixO3. Phys. Rev. B. 85, 174503 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Luna, K., Giraldo-Gallo, P., Geballe, T., Fisher, I., Beasley, M.: Disorder driven metal-insulator transition in BaPb1-xBixO3 and inference of disorder-free critical temperature. Phys. Rev. Lett. 113, 177004 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Giraldo-Gallo, P., Zhang, Y., Parra, C., Manoharan, H.C., Beasley, M.R., Geballe, T.H., Kramer, M.J., Fisher, I.R.: Stripe-like nanoscale structural phase separation in superconducting BaPb1-xBixO3. Nat. Commun. 6, 8231 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Balandeh, S., Green, R.J., Foyevtsova, K., Chi, S., Foyevtsov, O., Li, F., Sawatzky, G.A.: Experimental and theoretical study of the electronic structure of single-crystal BaBiO3. Phys. Rev. B. 96, 165127 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Khazraie, A., Foyevtsova, K., Elfimov, I., Sawatzky, G.A.: Oxygen holes and hybridization in the bismuthates. Phys. Rev. B. 97, 075103 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Foyevtsov, O., Balandeh, S., Chi, S., Sawatzky, G.A.: Experimental and theoretical study of the electronic structure of single-crystal BaBiO3. Physica B. 570, 328–333 (2019)ADSCrossRefGoogle Scholar
  43. 43.
    Yan, B., Jansen, M., Felser, C.: A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 9, 709–711 (2013)CrossRefGoogle Scholar
  44. 44.
    Meir, B., Gorol, S., Kopp, T., Hammerl, G.: Observation of two-dimensional superconductivity in bilayers of BaBiO3 and BaPbO3. Phys. Rev. B. 96, 100507 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Applied Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations