Advertisement

First-principles Predictions on Half-Metallic, Mechanical, and Acoustic Properties of CuHg2Ti-Type Mn2LiZ (Z=As, Sb) Compounds

  • Daguo Jiang
  • Yuanxiu Ye
  • Weibo Yao
  • Dongwen Zeng
  • Jie Zhou
  • Wen Ruan
  • Yufeng WenEmail author
Original Paper
  • 67 Downloads

Abstract

Using first-principles calculations, we predicted the half-metallic, mechanical, and acoustic properties of novel CuHg2Ti-type Mn2LiZ (Z=As, Sb) compounds. It was found that Mn2LiAs and Mn2LiSb are half-metallic ferrimagnetic compounds with gaps in the minority-spin direction of 1.094 and 1.099 eV in equilibrium state, respectively, and have an integer total magnetic moments of 2.000 μB per formula unit for adherence to the Slater-Pauling rule. It was also found that Mn2LiAs and Mn2LiSb are mechanically stable, brittle, and elastically anisotropic, and Mn2LiAs has more brittleness, more significant anisotropy, and higher Debye temperature than Mn2LiSb.

Keywords

CuHg2Ti-type Mn2LiZ compounds Half-metallicity Mechanical properties Acoustic properties First-principles calculations 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (51661013), the Science Funds of Natural Science Foundation of Jiangxi Province (20171BAB201020), the Technology Research Project of Jiangxi Provincial Department of Education (GJJ160737), and the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University (JZB15007).

References

  1. 1.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 39, 1–50 (2011)CrossRefGoogle Scholar
  3. 3.
    Zenasni, H., Faraoun, H.I., Esling, C.: First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure. J. Magn. Magn. Mater. 333, 162–168 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Ramesh Kumar, K., Harish Kumar, N., Babu, P.D., Venkatesh, S., Ramakrishnan, S.: Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2VGa. J. Phys.: Condens. Matter 24, 336007 (2012)Google Scholar
  5. 5.
    Qi, S., Zhang, C.H., Chen, B., Shen, J., Chen, N.: First-principles study on the ferrimagnetic half-metallic Mn2FeAs alloy. J. Solid State Chem. 225, 8–12 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Berri, S., Ibrir, M., Maouche, D., Bensalem, R.: First principles study of structural, electronic and magnetic properties of Mn2CoAs. J. Magn. Magn. Mater. 361, 132–136 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, H.Z., Meng, F., Liu, H.Y., Li, J.Q., Liu, E.K., Wu, G.H., Zhu, X.X., Jiang, C.B.: Origin of the Z - 28 rule in Mn2Cu-based Heusler alloys: a comparing study. J. Magn. Magn. Mater. 324, 2127–2130 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Kervan, S., Kervan, N.: Half-metallic properties of the CuHg2Ti-type Mn2ZnSi full-Heusler compound. Curr. Appl. Phys. 13, 80–83 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Abada, A., Amara, K., Hiadsi, S., Amrani, B.: First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 388, 59–67 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Kervan, N., Kervan, S., Canko, O., Atiş, M., Taşkin, F.: Half-metallic ferrimagnetism in the Mn2NbAl full-Heusler compound: a first-principles study. J. Supercond. Nov. Magn. 29, 187–192 (2015)CrossRefGoogle Scholar
  11. 11.
    Gupta, D.C., Bhat, I.H.: Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater. Sci. Eng. B 193, 70–75 (2015)CrossRefGoogle Scholar
  12. 12.
    Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)CrossRefGoogle Scholar
  13. 13.
    Semari, F., Dahmane, F., Baki, N., Al-Douri, Y., Akbudak, S., Uğur, G., Uğur, Ş., Bouhemadou, A., Khenata, R., Voon, C.H.: First-principle calculations of structural, electronic and magnetic investigations of Mn2RuGe1−xSnx quaternary Heusler alloys, Chinese. J. Phys. 56, 567–573 (2018)Google Scholar
  14. 14.
    Wei, X.P., Chu, S.B., Mao, G.Y., Deng, H., Lei, T., Hu, X.R.: First-principles study of properties of Mn2ZnMg alloy. J. Magn. Magn. Mater. 323, 2295–2299 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Wei, X.P., Deng, J.B., Chu, S.B., Mao, G.Y., Lei, T., Hu, X.R.: Half-metallic ferrimagnetism in full-Heusler Mn2CuMg. J. Magn. Magn. Mater. 323, 185–188 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Deng, H., Wei, X.P., Lei, T., Lei, Y.: Half-metallic and antiferromagnetism property of Mn2CdMg under pressure. J. Supercond. Nov. Magn. 25, 2465–2471 (2012)CrossRefGoogle Scholar
  17. 17.
    Gupta, D.C., Bhat, I.H.: A first-principles study of Mn2RuSi: magnetic, electronic and mechanical properties. J. Alloy. Compund. 575, 292–296 (2013)CrossRefGoogle Scholar
  18. 18.
    Song, T., Tian, J.H., Ma, Q., Sun, X.W., Liu, Z.J.: Electronic structure, phase stability, and elastic properties of inverse Heusler compound Mn2RuSi at high pressure. J. Supercond. Nov Magn. 30, 951–958 (2017)CrossRefGoogle Scholar
  19. 19.
    Song, J.T., Zhang, J.M.: The structural, electronic, magnetic and elastic properties of Ge doped half-Heusler compounds Mn2GexAs1−x (x = 0.25, 0.50, 0.75, 1.00). J. Magn. Magn. Mater. 460, 461–470 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Song, T., Sun, X.W., Tian, J.H., Wei, X.P., Wang, G.X., Ma, Q.: The effect of pressure on the structural, electronic, magnetic and thermodynamic properties of the Mn2RuGe inverse Heusler alloy. J. Magn. Magn. Mater. 428, 287–292 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Song, T., Ma, Q., Sun, X.W., Liu, Z.J., Wei, X.P., Tian, J.H.: High-pressure and high-temperature physical properties of half-metallic full-Heusler alloy Mn2RuSi by first-principles and quasi-harmonic Debye model. J. Magn. Magn. Mater. 424, 359–364 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Jiang, D.G., Ye, Y. X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ (Z = Si and Ge) Heusler compounds. J. Magn. Magn. Mater. 458, 268–278 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Jiang, D.G., Ye, Y.X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles predictions on structural, elastic and half-metallic properties of Fe2LiAs Heusler compound. J. Magn. Magn. Mater. 458, 235–240 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Wen, Y., Zeng, X., Ye, Y., Yan, L., Wu, D., Gou, Q., Liu, L.: First-principles calculations of acoustic and anharmonic properties of ferromagnetic Cu2MnZ (Z = Al and In) Heusler alloys. J. Supercond. Nov. Magn. 31, 1847–1856 (2018)CrossRefGoogle Scholar
  25. 25.
    Wen, Y., Yu, X., Zeng, X., Ye, Y., Wu, D., Gou, Q.: Ab initio calculations of the mechanical and acoustic properties of Ti2-based Heusler alloys under pressures. Eur. Phys. J. B 91, 140 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, L., Zeng, X., Gou, Q., Ye, Y., Wen, Y., Ou, P.: The structural stability and mechanical properties of Cu2MnAl and Cu2MnIn under pressure: first-principles Study. J. Electron. Mater. 47, 3005–3017 (2018)CrossRefGoogle Scholar
  27. 27.
    Liu, L., Wu, X., Wang, R., Mao, H., Jiang, Y., He, Y., Wen, Y.: First-principle calculations on the structural, mechanical, and electronic properties of Mn2RuSi and Mn2RuGe under pressure. J. Supercond. Nov. Magn. 31, 3667–3677 (2018)CrossRefGoogle Scholar
  28. 28.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  30. 30.
    Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M.: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B 41, 10311 (1990)ADSCrossRefGoogle Scholar
  37. 37.
    Francis, B.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)zbMATHCrossRefGoogle Scholar
  38. 38.
    Skaftouros, S., Özdoğan, K., Şaşloğlu, E., Galanakis, I.: Generalized Slater–Pauling rule for the inverse Heusler compounds. Phys. Rev. B 87, 024420–024426 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Inomata, K., Ikeda, N., Tezuka, N., Goto, R., Sugimoto, S., Wojcik, M., Jedryka, E.: Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9, 014101 (2008)CrossRefGoogle Scholar
  40. 40.
    Li, X.X., Yang, J.L.: First-principles design of spintronics materials. Natl. Sci. Rev. 3, 365–381 (2016)CrossRefGoogle Scholar
  41. 41.
    Özdog͂an, K., Galanakis, I., Şaşiog͂lu, E., Aktaş, B.: Defect-driven appearance of half-metallic ferrimagnetism in Co–Mn-based Heusler alloys. Solid State Commun. 142, 492–497 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    žutiĆ, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  44. 44.
    Voigt, W.: Lehrbuch der kristallphysik. Leipzig, Taubner (1928)zbMATHGoogle Scholar
  45. 45.
    Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)CrossRefGoogle Scholar
  46. 46.
    Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Pugh, S. F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  48. 48.
    Frantsevich, I. N., Voronov, F. F., Bokuta, S.A.: . In: Frantsevich, I. N. (ed.) Elastic constants and elastic moduli of metals and insulators handbook, pp 60–180. Kiev, Naukova Dumka (1983)Google Scholar
  49. 49.
    Pettifor, D. G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar
  50. 50.
    Nye, J. F.: Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York (1985)zbMATHGoogle Scholar
  51. 51.
    Zener, C.: Elasticity and anelasticity of metals. University of Chicago, Chicago (1948)zbMATHGoogle Scholar
  52. 52.
    Ranganthan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Kube, C.M.: Elastic anisotropy of crystals. AIP Adv. 6, 095209 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Schreiber, E., Anderson, O. L., Soga, N.: Elastic constants and their measurements. McGraw, New York (1973)Google Scholar
  55. 55.
    Anderson, O. L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences and PhysicsJinggangshan UniversityJi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations