Calculation and Measurement of the Magnetic Field of Nd2Fe14B Magnets for High-Temperature Superconducting Magnetic Bearing Rotor

  • Yincai Zou
  • Xing Bian
  • Jin Shang
  • Xiang Guan
  • Jihao Wu
  • Qing LiEmail author
Original Paper


The external magnetic flux density and distribution of the permanent magnet (PM) rotor of the high-temperature superconducting (HTS) magnetic bearing directly affect the load-carrying properties and stability of the HTS magnetic bearing. In order to facilitate the design of the PM rotor that meets the application requirements, a finite element analysis (FEA) method to calculate the magnetic flux density and distribution of PM rings and PM rotor would be used. A magnetic field measurement system was built as well. By comparing the results of calculation and measurement, the validity of the magnetic field calculation method is verified. And the calculation results are promoted after correcting the calculation parameters of the magnetic ring. Therefore, the correctness and accuracy of the calculation method are verified by experimental measurement. The magnetic field measurement system can be used to measure and select the magnetic rings with uniform and consistent magnetic field to improve the stability of the HTS magnetic bearing. And the performance of the Nd2Fe14B magnets N52 at liquid nitrogen temperature (77 K) was measured, which has been increased by about 9% relative to magnetic field at room temperature (295 K).


High-temperature superconducting magnetic bearing Nd2Fe14B magnets Magnetic field calculation method Experimental measurement 


Funding Information

This work is financially supported by the fund of the State Key Laboratory of Technologies in Space Cryogenic Propellants,SKLTSCP1902,and the fund of National Research and Development Project for Key Scientific Instruments,ZDYZ2014-1.


  1. 1.
    Caplanne, G., Berthier, R., Pfister, R., Ronayette, L., Pissard, M., Vincent, B., et al.: Cryogenic system for the 43 T hybrid magnet at LNCMI Grenoble: from the needs to the commissioning. IOP Conf. Ser. Mater. Sci. Eng. 171, 012107 (2017). CrossRefGoogle Scholar
  2. 2.
    Bevins, B.S., Chronis, W.C., Keesee, M.S.: Automatic Pumpdown of the 2K Cold Compressors for the CEBAF Central Helium Liquefier. Adv. Cryog. Eng. 41, 663–668 (2011). CrossRefGoogle Scholar
  3. 3.
    Lee, K., Kim, B., Ko, J., Jeong, S., Lee, S.S.: Advanced design and experiment of a small-sized flywheel energy storage system using a high-temperature superconductor bearing. Supercond. Sci. Technol. 20, 634–639 (2007). ADSCrossRefGoogle Scholar
  4. 4.
    Ichihara, T., Matsunaga, K., Kita, M., Hirabayashi, I., Isono, M., Hirose, M., et al.: Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system. IEEE Trans. Appl. Supercond. 15, 2245–2248 (2005). ADSCrossRefGoogle Scholar
  5. 5.
    Ma, K.B., Postrekhin, Y.V., Chu, W.K.: Superconductor and magnet levitation devices. Rev. Sci. Instrum. 74, 4989–5017 (2003). ADSCrossRefGoogle Scholar
  6. 6.
    Navau, C., Del-Valle, N., Sanchez, A.: Macroscopic modeling of magnetization and levitation of hard type-II superconductors: the critical-state model. IEEE Trans. Appl. Supercond. 23, 8201023–8201023 (2013). ADSCrossRefGoogle Scholar
  7. 7.
    Matsuura, Y.: Recent development of Nd – Fe – B sintered magnets and their applications. J. Magn. Magn. Mater. 303, 344–347 (2006). ADSCrossRefGoogle Scholar
  8. 8.
    Hu: Bo-ping, status and development tendency of rare-earth permanent magnet materials. J. Magn. Mater. Devices. 45, 66–77 (2014). CrossRefGoogle Scholar
  9. 9.
    Fidler, J., Schrefl, T., Hoefinger, S.: Current status and recent topics of rare-earth permanent magnets. J. Phys. D. Appl. Phys. 44, 1–11 (2011). CrossRefGoogle Scholar
  10. 10.
    Wen-Yan, H.: Property and research progress of NbFeB permanent magnets. Mod. Electron. Tech. 35, 151–152 (2012). CrossRefGoogle Scholar
  11. 11.
    El-refaie, A.M., Alexander, J.P.: Rotor End Losses in multi-phase fractional-slot concentrated- winding permanent magnet synchronous machines. Ind. Appl. IEEE Trans. 47, 2066–2074 (2010). CrossRefGoogle Scholar
  12. 12.
    Werfel, F.N., Flögel-Delor, U., Rothfeld, R., et al.: HTS magnetic bearings. Phys. C Supercond. Appl. 376, 1482–1486 (2002). ADSCrossRefGoogle Scholar
  13. 13.
    Werfel, F.N., Floegel-Delor, U., Riedel, T., et al.: Progress toward 500 kg HTS bearings. IEEE Trans. Appl. Supercond. 13(2), 2173–2178 (2003). ADSCrossRefGoogle Scholar
  14. 14.
    Werfel, F.N., Floegel-Delor, U., Rothfeld, R., Goebel, B., Wippich, D., Riedel, T.: Modelling and construction of a compact 500 kg HTS magnetic bearing. Supercond. Sci. Technol. 18, S19–S23 (2005). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yincai Zou
    • 1
    • 2
  • Xing Bian
    • 1
  • Jin Shang
    • 1
    • 2
  • Xiang Guan
    • 1
    • 2
  • Jihao Wu
    • 1
    • 2
  • Qing Li
    • 1
    • 2
    Email author
  1. 1.State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations