The Effect of Functionalization on Spin-Polarized Transport of Gallium Nitride–Based Magnetic Tunnel Junctions

  • Shweta MeenaEmail author
  • V. Jaswanth Kumar Reddy
Original Paper


Using first-principles spin-polarized density functional theory computations, the effect of functionalization (fluorination and hydrogenation) on spin-polarized transport of gallium nitride (GaN) nanosheet–based magnetic tunnel junction (MTJ) with CrO2 as electrodes is investigated. The results show fluorinated GaN–based structure exhibits better spin filtration and high TMR (maximum ~ 99%), as compared with hydrogenated GaN (maximum TMR ~ 93%)– and pristine GaN (maximum TMR ~ 83%)–based structures. In addition, fluorinated GaN nanosheet exhibits a ferromagnetic behavior with a magnetic movement of 1.0 μb per fluorine atom. The magnetic movements for pristine GaN and hydrogenated GaN sheets are reported to be 0 μb and 0.9 μb per hydrogen atom, respectively. Higher TMR, better spin filtration, and ferromagnetic behavior for fluorinated GaN–based structure open up its possibility as spin filter (injector) in MTJs and other spin-based devices.


Gallium nitride (GaN) MTJ TMR Spin injection efficiency DOS FM (ferromagnetic) Adsorption Band structure HMF (half-metal ferromagnetic) 



The authors would like to thank the National Institute of Technology, Kurukshetra, and the Department of Electronics & Communication Engineering for providing the computational tools and other resources for carrying out this research work. We also thank Dr. Sudhanshu Choudhary for his fruitful discussion.


  1. 1.
    S. Z. Peng, Y. Zhang, M. X. Wang, Y. G. Zhang and W. S. Zhao, “Magnetic Tunnel Junctions for Spintronics: Principles and Applications,” Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1-16, 2014, John Wiley & Sons, Inc.
  2. 2.
    S. S. P. Parkin, “Spintronic Materials and Devices: Past, Present and Future,” IEDM Technical Digest, IEEE International Electron Devices Meeting, pp. 903-906, 2004.
  3. 3.
    Y. Kato, J. Berezovsky and D. D. Awschalom, “Spintronics: semiconductors, molecules and quantum information,” IEDM Technical Digest, IEEE International Electron Devices Meeting, pp. 537-538, 2004.
  4. 4.
    Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A. 54(3), 225–226 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    Ikeda, S., Hayakawa, J., Lee, Y.M., Matsukura, F., Ohno, Y., Hanyu, T., Ohno, H.: Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices. 54(5), 991–1002 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Pearton, S.J., Park, Y.D., Abernathy, C.R., Overberg, M.E., Thaler, G.T., kim, J., Ren, F.: GaN and other materials for semiconductor spintronics. J. Electron. Mater. 32(5), 288–297 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Hasegawa, H., Sato, T., Kaneshiro, C.: Properties of nanometer-sized metal–semiconductor interfaces of GaAs and InP formed by an in situ electrochemical process. J. Vac. Sci. Technol. B. 17(4), 1856–1866 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Abe, E., Sato, K., Matsukura, F., Zhao, J.H., Ohno, Y., Ohno, H.: Molecular beam epitaxy and properties of Cr-doped GaSb. Journal of Superconductivity and Novel Magnetism. 17(3), 349-352 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Cho, S., Choi, S., Cha, G., Hong, S.C., Kim, Y., Zhao, Y., Freeman, A.J., Ketterson, J.B., Kim, B.J., Kim, Y.C., Choi, B.: Room-temperature ferromagnetism in (Zn1 − xMnx)GeP2 semiconductors. Phys. Rev. Lett. 88(25), 257203 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Medvedkin, G.A., Hirose, K., Ishibashi, T., Nishi, T., Voevodin, V.G., Sato, K.: New magnetic materials in ZnGeP2-Mn chalcopyrite system. J. Cryst. Growth. 236(4), 609–612 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Choi, S., Cha, G.-B., Hong, S.C., Cho, S., Kim, Y., Kellerson, J.B., Jeong, S.-Y., Yi, G.C.: Room-temperature ferromagnetism in chalcopyrite Mn-dopedZnSnAs2 single crystals. Solid State Commun. 122(3–4), 165–167 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Ueda, K., Tahata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79(7), 988–990 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Matsumoto, Y., Murahami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshikara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291(5505), 854–856 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Chambers, S.A.: Mater. Today. 2, 34 (2002)CrossRefGoogle Scholar
  15. 15.
    Maruska, H.P., Tietjen, J.J.: The preparation and properties of vapor-deposited single crystal-line GaN. Appl. Phys. Lett. 15(10), 327–329 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B. 10(2), 676–681 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    Bloom, S., Harbek, G., Meier, E., Ortenburg, I.B.: Band structure and reflectivity of GaN. Phys. Status Solidi B. 66(1), 161–168 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    Diet, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287(5455), 1019–1022 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Bonanni, A., Simbrunner, C., Wegscheider, M., Przybylinska, H., Wolos, A., Sitter, H., Jantsch, W.: Doping of GaN with Fe and Mg for spintronics applications. Phys. Status Solidi B. 243(7), 1701–1705 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Debernardi, A.: Mn-doped GaN/AlN heterojunction for spintronic devices. Superlattice. Microst. 40(4), 530–532 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Li, H.: Electronic structures and magnetic properties of GaN sheets and nanoribbons. J. Phys. Chem. C. 114(26), 11390–11394 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Fan, S.W.: Boron doped GaN and InN: potential candidates for spintronics. J. Appl. Phys. 121(7), 073905 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Munawar Basha, S.: Investigations on cobalt doped GaN for spintronic applications. J. Cryst. Growth. 318(1), 432–435 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Xiao, M.X., Yao, T.Z., Ao, Z.M., Wei, P., Wang, D.H., Song, H.Y.: Tuning electronic and magnetic properties of GaN nanosheets by surface modifications and nanosheet thickness. Phys. Chem. Chem. Phys. 17(14), 8692–8698 (2015)CrossRefGoogle Scholar
  25. 25.
    Ptasinska, M., Piechota, J., Krukowski, S.: Adsorption of hydrogen at the GaN (0001̅) surface: an ab initio study. J. Phys. Chem. C. 119(21), 11563 – 11569 (2015)CrossRefGoogle Scholar
  26. 26.
    Xiao, W., Wang, L., Luo, H., Yang, J.: Magnetic properties in semifluorinated GaN sheet from first principles calculations. Phys. Status Solidi B. 249(7), 1–5 (2012)CrossRefGoogle Scholar
  27. 27.
    Li, M.K.: Investigation of a GaMnN/GaN/GaMnN magnetic tunnel junction. J. Korean Phys. Soc. 50(6), 1916–1920 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Kumar, A., Capua, E., Fontanesi, C., Carmjeli, R., Naaman, R.: Injection of spin-polarized electrons into a AlGaN/GaN device from an electrochemical cell: evidence for an extremely long spin lifetime. ACS Nano. 12(4), 3892–3897 (2018)CrossRefGoogle Scholar
  29. 29.
    Shakil, M., Hussain, A., Zafar, M., Ahmad, S., Khan, M.I., Masood, M.K., Majid, A.: Ferromagnetism in GaN doped with transition metals and rare-earth elements- a review. Chin. J. Phys. 56(4), 1570–1577 (2018)CrossRefGoogle Scholar
  30. 30.
    Farooq, M.U., Duan, Z., Farooq, M., Fatima, K., Khan, M.A., Zhang, L., Liu, Y., Yousaf, M., Zou, B.: Spin-induced magnetic anisotropy in novel Co-doped GaN nanoneedles and their related photoluminescence. New J. Chem. 42(11), 8338–8341 (2018)CrossRefGoogle Scholar
  31. 31.
    Dutta, S.: Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28(4), 253–278 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    S. Datta, “The non-equilibrium Green's function (NEGF) formalism: An elementary introduction,” Digest. International Electron Devices Meeting, pp. 703-706,2002.
  33. 33.
    Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65(16), 165401 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14(11), 2745–2779 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Meena, S., Choudhary, S.: Effects of functionalization of carbon nanotubes on its spin transport properties. Mater. Chem. Phys. 217, 175–181 (2018)CrossRefGoogle Scholar
  36. 36.
    Zhou, Y.: Electronic transport property of in-plane heterostructures constructed by MoS2 and WS2 nanoribbons. RSC Adv. 5(82), 66852–66860 (2015)CrossRefGoogle Scholar
  37. 37.
    Dong, J., Li, H., Li, L.: Multi-functional nano-electronics constructed using boron phosphide and silicon carbide nanoribbons. NPG Asia Mater. 5, 1–11 (2013)CrossRefGoogle Scholar
  38. 38.
    Meena, S., Choudhary, S.: Tuning the tunneling magnetoresistance by using fluorinated graphene in grapheme based magnetic junctions. AIP Adv. 7(12), 125008 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Meena, S., Choudhary, S.: Spin transport in carbon nanotubes bundles: an ab-initio study. Phys. Lett. A. 381(39), 3431–3439 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Wang, B.: Spin-dependent transport in Fe-doped carbon nanotubes. Phys. Rev. B. 75(23), 235415 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Meena, S., Choudhary, S.: Enhancing TMR and spin-filtration by using out-of-plane graphene insulating barrier in MTJs. Phys. Chem. Chem. Phys. 19(27), 17765–17772 (2017)CrossRefGoogle Scholar
  42. 42.
    Yao, K.L., Min, Y., Liu, Z.L., Cheng, H.G., Zhu, S.C., Gao, G.Y.: First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A. 372(34), 5609–5613 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Choudhary, S., Goyal, R.: First-principles study of spin transport in CrO2-graphene-CrO2 magnetic tunnel junction. J. Supercond. Nov. Magn. 29(1), 139–143 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of TechnologyKurukshetraIndia

Personalised recommendations