Advertisement

Electronic Reconstructions in the Transition Metal–Free Heterostructures: LaAlO3/SrGeO3

  • Meiyu Li
  • Xiao GuEmail author
Original Paper
  • 20 Downloads

Abstract

Based on density functional theory, we have investigated the electronic reconstruction in the polar LaAlO3 slabs and LaAlO3/SrGeO3 (LAO/SGO) heterostructures. Non-transition-metal component SGO could be used to create LAO/SGO heterostructures with little lattice mismatch. In these heterostructures, polar LAO truncated by the non-polar SGO would induce electronic reconstruction. Residual potentials in film normal direction are found because of the incompleteness of the reconstruction, since there are band gaps in LAO and SGO bulk. Such residual potentials are very close to unsupported LAO slabs and influenced by the interspacing of the interfaces. The thickness of the two-dimensional electron gas in the LAO/SGO heterostructures has been also estimated, which is believed much wider distributed than the corresponding holes and the unsupported slabs.

Keywords

Electronic reconstruction Heterostructures polar interface 

Notes

References

  1. 1.
    Harrison, W.A., Kraut, E.A., Waldrop, J.R., Grant, R.W.: Phys. Rev. B. 18, 4402 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    Ohtomo, A., Hwang, H.Y.: Nature. 427, 423 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Huijben, M., Rijnders, G., Blank, D.H.A., Bals, S., Van Aert, S., Verbeeck, J., Van Tendeloo, G., Brinkman, A., Hilgenkamp, H.: Nat. Mater. 5, 556 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Reyren, M., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Ruetschi, A.S., Jaccard, D., et al.: Science. 317, 1196 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Wadati, H., Hotta, Y., Fujimori, A., Susaki, T., Hwang, H.Y., Takata, Y., Horiba, K., Matsunami, M., Shin, S., Yabashi, M., et al.: Phys. Rev. B. 77, 045122 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Takizawa, M., Hotta, Y., Susaki, T., Ishida, Y., Wadati, H., Takata, Y., Horiba, K., Matsunami, M., Shin, S., Yabashi, M., et al.: Phys. Rev. Lett. 102, 236401 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Kourkoutis, L.F., Muller, D.A., Hotta, Y., Hwang, H.Y.: Appl. Phys. Lett. 91, 163101 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Hotta, Y., Susaki, T., Hwang, H.Y.: Phys. Rev. Lett. 99, 236805 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Seo, S.S.A., Choi, W.S., Lee, H.N., Yu, L., Kim, K.W., Bernhard, C., Noh, T.W.: Phys. Rev. Lett. 99, 266801 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Okamoto, S., Millis, A.J., Spaldin, N.A.: Phys. Rev. Lett. 97, 056802 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Smadici, S., Abbamonte, P., Bhattacharya, A., Zhai, X.F., Jiang, B., Rusydi, A., Eckstein, J.N., Bader, S.D., Zuo, J.M.: Phys. Rev. Lett. 99, 196404 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    May, S.J., Shah, A.B., Velthuis, S., Fitzsimmons, M.R., Zuo, J.M., Zhai, X., Eckstein, J.N., Bader, S.D., Bhattacharya, A.: Phys. Rev. B. 77, 174409 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., Tokura, Y.: Nat. Mater. 11, 103–113 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Hong, Z., Damodaran, A.R., Xue, F., Hsu, S.-L., Britson, J., Yadav, A.K., Nelson, C.T., Wang, J.-J., Scott, J.F., Martin, L.W., Ramesh, R., Chen, L.-Q.: Nano Lett. 17, 2246–2252 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Li, B., Chopdekar, R.V., Diaye, A.T.N., Mehta, A., Paige Byers, J., Browning, N.D., Arenholz, E., Takamura, Y.: Appl. Phys. Lett. 109, 152401 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Flint, C.L., Jang, H., Lee, J.-S., N’Diaye, A.T., Shafer, P., Arenholz, E., Suzuki, Y.: Phys. Rev. Mater. 1, 024404 (2017)CrossRefGoogle Scholar
  17. 17.
    Singh-Bhalla, G., Bell, C., Ravichandran, J., Siemons, W., Hikita, Y., Salahuddin, S., Hebard, A.F., Hwang, H.Y., Ramesh, R.: Nat. Phys. 7, 80–86 (2011)CrossRefGoogle Scholar
  18. 18.
    Pai, Y.-Y., Tylan-Tyler, A., Irvin, P., Levy, J.: Rep. Prog. Phys. 81(3), 036503 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Pentcheva, R., Pickett, W.E.: Phys. Rev. Lett. 99, 016802 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Shimizu, Y., Syono, Y., Akimoto, S.: High Temp.-High Press. 2, 113 (1970)Google Scholar
  21. 21.
    Hayward, R.A., Morrison, F.D., Redfern, S.A.T., Salje, E.K.H., Scott, J.F., Knight, K.S., Tarantino, S., Glazer, A.M., Shuvaeva, V., Daniel, P., et al.: Phys. Rev. B. 72, 054110 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Troullier, N., Martins, J.L.: Phys. Rev. B. 43, 1993 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: J. Phys. Condens. Matter. 14, 2745 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Gu, X., Elfimov, I.S., Sawatzky, G.A.: http://arxiv.org/abs/0911.4145 (2009). Accessed 16 Nov 2019
  26. 26.
    Sing, G., Berner, K., Goss, A., Muller, A., Ruff, A., Wetscherek, S., Thiel, J., Mannhart, S.A., Pauli, C.W.S., et al.: Phys. Rev. Lett. 102, 176805 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Nakagawa, M., Hwang, H.Y., Muller, D.A.: Nat. Mater. 5, 204 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Basletic, M., Maurice, J.L., Carretero, C., Herranz, G., Copie, O., Bibes, M., Jacquet, E., Bouzehouane, K., Fusil, S., Barthelemy, A.: Nat. Mater. 7, 621 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations