Study of New d0 Half-Metallic Half-Heusler Alloy MgCaB: First-Principles Calculations

  • A. AbadaEmail author
  • N. Marbouh
Original Paper


Using first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation(GGA) for the exchange correlation potential, we have studied the structural, elastic, electronic, and magnetic properties of new d0 half Heusler alloy MgCaB. We found that MgCaB is energetically, mechanically, and chemically stable in the α phase exhibiting ductile nature with negative cohesive and formation energies confirming the possibility of its synthesis experimentally. Our calculations predicate the half-metallicity of this alloy with total magnetic moment of 1.000 μB per formula unit, well consistent with Slater-Pauling rule (Mtot = (8 –ZtotB). The obtained results show that MgCaB has a majority band gap of 0.834 eV with a half-metallic gap of 0.305 eV. The origin of this gap is well discussed. It was also found that half-Heusler alloy MgCaB is a robust half-metallic with respect to the lattice contraction or dilatation. It preserved its half-metallicity in a wide range of lattice constants of 5.47–7.32 Å, and it is considered as nearly gapless half-metallic ferromagnet for lattice parameters range of 7.32–8.14 Å which makes it a worthwhile candidate for applications in spintronic field.


Half-Heusler alloy d0 half-metallic Ferromagnet Elastic properties Gapless half-metallic 



  1. 1.
    Prinz, G.A.: Science. 282, 1660 (1998)CrossRefGoogle Scholar
  2. 2.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science. 294, 1488 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Pickett, W.E., Moodera, J.S.: Phys. Today. 54, 39 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    de Boeck, J., van Roy, W., Das, J., Motsnyi, V., Liu, Z., Lagae, L., Boeve, H., Dessein, K., Borghs, G.: Semicond. Sci. Technol. 17, 342 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    Soeya, S., Hayakawa, J., Takahashi, H., Ito, K., Yamamoto, C., Kida, A., Asano, H., Matsui, M.: Appl. Phys. Lett. 80, 823 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Dho, J., Ki, S., Gubkin, A.F., Park, J.M.S., Sherstobitov, E.A.: Solid. State.Commun. 150, 86 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Zhu, Z.H., Yan, X.H.: J. Appl. Phys. 106, 023713 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Kobayashi, K.L., Kimura, T., Sawada, H., Terakura, K., Tokura, Y.: Nature. 395, 677 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Galanakis, I., Mavropoulos, P.: Phys. Rev. B. 67, 104417 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Xu, Y.-Q., Liu, B.-G., Pettifor, D.G.: Phys. B. 329, 1117 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L.: Solid State Commun. 133, 301 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Yao, K.L., Gao, G.Y., Liu, Z.L., Zhu, L., Li, Y.L.: Phys. B. 366, 62 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Ge, X.-F., Zhang, Y.-M.: J. Magn. Magn. Mater. 321, 198 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Abada, A., Amara, K., Hiadsi, S., Amrani, B.: J. Magn. Magn. Mater. 388, 59 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Behbahani, M.A., Moradi, M., Rostami, M., Davatolhagh, S.: J. Phys. Chem. Solids. 92, 85 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Hosseini, S., Ahmadian, F.: J. Supercond. Nov. Magn. 31, 1265 (2018)CrossRefGoogle Scholar
  18. 18.
    Wang, X., Cheng, Z., Guo, R., Wang, J., Rozale, H., Wang, L., Yu, Z., Liu, G.: Mater. Chem. Phys. 193, 99 (2017)CrossRefGoogle Scholar
  19. 19.
    Ahmadian, F., Alinajimi, R.: Comput. Mater. Sci. 79, 345 (2013)CrossRefGoogle Scholar
  20. 20.
    Ahmadian, F., Salary, A.: Intermetallics. 46, 243 (2014)CrossRefGoogle Scholar
  21. 21.
    Barman, S.R., Chakrabarti, A.: Phys. Rev. B. 77, 176401 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Luo, H., Liu, G., Feng, Z., Li, Y., Ma, L., Wu, G., Zhu, X., Jiang, C., Xu, H.: J. Magn. Magn. Mater. 321, 4063 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Luo, H., Liu, G., Meng, F., Li, S., Zhu, W., Wu, G., Zhu, X., Jiang, C.: Physica B: Condens. Matter. 405, 3092 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Zutic, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Feng, L., Liu, E., Zhang, W., Wang, W., Wu, G.: J. Magn. Magn. Mater. 351, 92 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, J., Gao, G.Y., Yao, K.L., Song, M.H.: J. Alloy. Compd. 509, 10172–10178 (2011)CrossRefGoogle Scholar
  27. 27.
    Lakdja, A., Rozale, H., Chahed, A., Benhelal, O.: J. Alloy. Compd. 564, 8–12 (2013)CrossRefGoogle Scholar
  28. 28.
    Lakdja, A., Rozale, H., Sayede, A., Chahed, A.: J. Magn. Magn. Mater. 354, 235–238 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Rozale, H., Amar, A., Lakdja, A., Moukadem, A., Chahed, A.: J. Magn. Magn. Mater. 336, 83–87 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Rozale, H., Khetir, M., Amar, A., Lakdja, A., Sayede, A., Benhelal, O.: Superlattice. Microst. 74, 146–155 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Umamaheswari, R., Yogeswari, M., Kalpana, G.: J. Magn. Magn. Mater. 350, 167–173 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Ahmad, M.: Naeemullah, Murtaza,G., Khenata,R., Omran,S.B., Bouhemadou,A. J. Magn. Magn. Mater. 377, 204–210 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Safavi, M., Moradi, M., Rostami, M.: J. Supercond. Nov. Magn. 30, 989–997 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhao, J.S., Gao, Q., Li, L., Xie, H.H., Hu, X.R., Xu, C.L., Deng, J.B.: Intermetallics. 89, 65–73 (2017)CrossRefGoogle Scholar
  35. 35.
    Rostami, M.: Surf. Sci. 674, 103–114 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Gao, G.Y., Yao, K.L., Li, N.: J. Phys. Condens. Matter. 23(7), 075501–075508 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Laref, A., Şaşıoğlu, E., Galanakis, I.: J. Phys. Condens. Matter. 23(29), 296001–296005 (2011)CrossRefGoogle Scholar
  38. 38.
    Hohenberg, P., Kohn, W.: Phys. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  39. 39.
    Kohn, W., Sham, L.J.: Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  40. 40.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k: AnAugmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001) ISBN 3-9501031-1-2Google Scholar
  41. 41.
    Perdew, J., Burke, P.K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    Monkhorst, H.J., Pack, J.D.: Phys. Rev. B. 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Birch, F.: Phys. Rev. 71, 809–824 (1947)ADSCrossRefGoogle Scholar
  44. 44.
    Adachi, S.: Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. John Wiley & Sons, Ltd ISBN: 978-0-470-74369-0 (2009)Google Scholar
  45. 45.
    Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M.: Phys. Rev. B. 41, 10311 (1990)ADSCrossRefGoogle Scholar
  46. 46.
    Mehl, M.J., Barry, B.M., Papaconstantopoulos, D.A.: Intermetallic compounds: principle and practice. In: Westbrook, J.H., Fleischeir, R.L. (eds.) Principles, vol. I, pp. 195–210. John Wiley & Sons, London (1995)Google Scholar
  47. 47.
    Wang, J.H., Yip, S., Phillpot, S.R., Wolf, D.: Phys. Rev. Lett. 71, 4182 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Pettifor, D.: Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar
  49. 49.
    Hill, R.: Proc. Phys. Soc A. 65, 349–354 (1952)ADSCrossRefGoogle Scholar
  50. 50.
    Voigt, W.: Lehrburch der Kristallphysik. Teubner, Leipzig (1928)Google Scholar
  51. 51.
    Reuss, A., Angew, Z.: Math. Mech. 9, 49–58 (1929)Google Scholar
  52. 52.
    Pugh, S.F.: Philos. Magn. 45, 823–843 (1954)Google Scholar
  53. 53.
    Haines, J., Leger, J.M., Bocquillon, G.: Ann. Rev. Mater. Res. 31, 1–23 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    Jun, L., Rui, Z., Li, L., Hui-Ning, D.: Chin. Phys. B. 20(7), 077101 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Şaşıoğlu, E., Galanakis, I., Sandratskii, L.M., Bruno, P.: J. Phys. Condens. Matter. 17, 3915–3930 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    Du, Y., Xu, G.Z., Zhang, X.M., Liu, Z.Y., Yu, S.Y., Liu, E.K., Wang, W.H., Wu, G.H.: EPL. 103, 37011 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’études physico-chimiques, Faculté des sciencesUniversité de Saida-Dr. Moulay TaharSaidaAlgeria

Personalised recommendations