Advertisement

Precision Measurements of the AC Field Dependence of the Superconducting Transition in Strontium Titanate

  • Chloe Herrera
  • Ilya SochnikovEmail author
Original Paper
  • 11 Downloads

Abstract

Strontium titanate has resurfaced as a material prompting vigorous debate about the origin of its superconductivity in the extremely low carrier concentration regime. Here, we used simultaneous AC susceptibility and transport methods to explore the superconducting phase transition region in this material. We determined that strontium titanate is extremely sensitive to even small AC fields, which also influence the resistive transition; we suggest that extreme vortex sizes and mobilities contribute to this large effect. Our findings will be of importance for accurately determining transition temperature, informing the debate about the pairing mechanism in strontium titanate, for which even millikelvin errors may be critical.

Keywords

Oxide superconductors Quantum phase transitions Strain tuning of superconductivity 

Notes

References

  1. 1.
    Appel, J.: Soft-mode superconductivity in SrTiO3. Phys. Rev. 180, 508–516 (1969)CrossRefGoogle Scholar
  2. 2.
    Takada, Y.: Theory of superconductivity in polar semiconductors and its application to N-type semiconducting SrTiO3. J. Phys. Soc. Jpn. 49, 1267–1275 (1980)CrossRefGoogle Scholar
  3. 3.
    Edge, J.M., Kedem, Y., Aschauer, U., Spaldin, N.A., Balatsky, A.V.: Quantum critical origin of the superconducting dome in SrTiO3. Phys. Rev. Lett. 115, 247002 (2015)CrossRefGoogle Scholar
  4. 4.
    Ruhman, J., Lee, P.A.: Superconductivity at very low density: the case of strontium titanate. Phys. Rev. B. 94, 224515 (2016)CrossRefGoogle Scholar
  5. 5.
    Gor’kov, L.P.: Phonon mechanism in the most dilute superconductor n-type SrTiO3. Proc. Natl. Acad. Sci. U. S. A. 113, 4646–4651 (2016)CrossRefGoogle Scholar
  6. 6.
    Gor’kov, L.P.: Back to mechanisms of superconductivity in low-doped strontium titanate. J. Supercond. Nov. Mag. 30, 845–852 (2017)CrossRefGoogle Scholar
  7. 7.
    Dunnett, K., Narayan, A., Spaldin, N.A., Balatsky, A.V.: Strain and ferroelectric soft-mode induced superconductivity in strontium titanate. Phys. Rev. B. 97, 144506 (2018)CrossRefGoogle Scholar
  8. 8.
    Wölfle, P., Balatsky, A.V.: Superconductivity at low density near a ferroelectric quantum critical point: doped SrTiO3. Phys. Rev. B. 98, 104505 (2018)CrossRefGoogle Scholar
  9. 9.
    Kedem, Y.: Novel pairing mechanism for superconductivity at a vanishing level of doping driven by critical ferroelectric modes. Phys. Rev. B. 98, 220505 (2018)CrossRefGoogle Scholar
  10. 10.
    Arce-Gamboa, J.R., Guzmán-Verri, G.G.: Quantum ferroelectric instabilities in superconducting SrTiO3. Phys. Rev. Mater. 2, 104804 (2018)CrossRefGoogle Scholar
  11. 11.
    M. N. Gastiasoro, A. V. Chubukov, R. M. Fernandes, Phonon mediated superconductivity in low carrier-density systems. Phys. Rev. B 99, 094524 (2019)Google Scholar
  12. 12.
    D. van der Marel, F. Barantani, C. W. Rischau, A possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Research 1, 013003 (2019)Google Scholar
  13. 13.
    Stucky, A., Scheerer, G.W., Ren, Z., Jaccard, D., Poumirol, J.-M., Barreteau, C., Giannini, E., van der Marel, D.: Isotope effect in superconducting n-doped SrTiO3. Sci. Rep. 6, 37582 (2016)CrossRefGoogle Scholar
  14. 14.
    Rischau, C.W., Lin, X., Grams, C.P., Finck, D., Harms, S., Engelmayer, J., Lorenz, T., Gallais, Y., Fauqué, B., Hemberger, J., Behnia, K.: A ferroelectric quantum phase transition inside the superconducting dome of Sr1−xCaxTiO3−δ. Nat. Phys. 13, 643 (2017)CrossRefGoogle Scholar
  15. 15.
    Tomioka, Y., Shirakawa, N., Shibuya, K., Inoue, I.H.: Enhanced superconductivity close to a non-magnetic quantum critical point in electron-doped strontium titanate. Nat. Commun. 10, 738 (2019)CrossRefGoogle Scholar
  16. 16.
    C. Herrera, J. Cerbin, K. Dunnett, A. V. Balatsky, I. Sochnikov, Strain-engineered interaction of quantum polar and superconducting phases. ArXiv:1808:03739 Cond-Mat (2018) (available at http://arxiv.org/abs/1808.03739)
  17. 17.
    Ahadi, K., Galletti, L., Li, Y., Salmani-Rezaie, S., Wu, W., Stemmer, S.: Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 5, eaaw0120 (2019)CrossRefGoogle Scholar
  18. 18.
    Schooley, J.F., Hosler, W.R., Ambler, E., Becker, J.H., Cohen, M.L., Koonce, C.S.: Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3. Phys. Rev. Lett. 14, 305–307 (1965)CrossRefGoogle Scholar
  19. 19.
    Koonce, C.S., Cohen, M.L., Schooley, J.F., Hosler, W.R., Pfeiffer, E.R.: Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163, 380–390 (1967)CrossRefGoogle Scholar
  20. 20.
    Reyren, N., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J.-M., Mannhart, J.: Superconducting interfaces between insulating oxides. Science. 317, 1196 (2007)CrossRefGoogle Scholar
  21. 21.
    Richter, C., Boschker, H., Dietsche, W., Fillis-Tsirakis, E., Jany, R., Loder, F., Kourkoutis, L.F., Muller, D.A., Kirtley, J.R., Schneider, C.W., Mannhart, J.: Interface superconductor with gap behaviour like a high-temperature superconductor. Nature. 502, 528 (2013)CrossRefGoogle Scholar
  22. 22.
    Maniv, E., Shalom, M.B., Ron, A., Mograbi, M., Palevski, A., Goldstein, M., Dagan, Y.: Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface. Nat. Commun. 6, 8239 (2015)CrossRefGoogle Scholar
  23. 23.
    Lin, X., Bridoux, G., Gourgout, A., Seyfarth, G., Krämer, S., Nardone, M., Fauqué, B., Behnia, K.: Critical doping for the onset of a two-band superconducting ground state in SrTiO3-δ. Phys. Rev. Lett. 112, 207002 (2014)CrossRefGoogle Scholar
  24. 24.
    Lin, X., Gourgout, A., Bridoux, G., Jomard, F., Pourret, A., Fauqué, B., Aoki, D., Behnia, K.: Multiple nodeless superconducting gaps in optimally doped SrTi1-xNbxO3. Phys. Rev. B. 90, 140508 (2014)CrossRefGoogle Scholar
  25. 25.
    S. E. Rowley, C. Enderlein, J. F. de Oliveira, D. A. Tompsett, E. B. Saitovitch, S. S. Saxena, G. G. Lonzarich, Superconductivity in the vicinity of a ferroelectric quantum phase transition. ArXiv:1801.08121 Cond-Mat (2018) (available at http://arxiv.org/abs/1801.08121)
  26. 26.
    Schooley, J.F., Hosler, W.R., Cohen, M.L.: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474–475 (1964)CrossRefGoogle Scholar
  27. 27.
    Pfeiffer, E.R., Schooley, J.F.: Effect of stress on the superconducting transition temperature of SrTiO3. J. Low Temp. Phys. 2, 333–352 (1970)CrossRefGoogle Scholar
  28. 28.
    Bensebaa, F., Hankiewicz, J., Kevan, L.: Low frequency and low magnetic field effects on the alternating current volume susceptibility of cuprate superconductors. J. Appl. Phys. 74, 7393–7396 (1993)CrossRefGoogle Scholar
  29. 29.
    Sochnikov, I., Shaulov, A., Yeshurun, Y., Logvenov, G., Bozovic, I.: Large oscillations of the magnetoresistance in nanopatterned high-temperature superconducting films. Nat. Nano. 5, 516–519 (2010)CrossRefGoogle Scholar
  30. 30.
    Shaulov, A., Dorman, D.: Investigation of harmonic generation in the alternating magnetic response of superconducting Y-Ba-Cu-O. Appl. Phys. Lett. 53, 2680–2682 (1988)CrossRefGoogle Scholar
  31. 31.
    Sochnikov, I., Shaulov, A., Tamegai, T., Yeshurun, Y.: Vortex phase transitions in Bi2Sr2CaCu2O8+x probed by nonlinear AC magnetic response. J. Phys. Conf. Ser. 150, 052244 (2009)CrossRefGoogle Scholar
  32. 32.
    Leitner, A., Olaya, D., Rogers, C.T., Price, J.C.: Upper critical field and fluctuation conductivity in Nb-doped strontium titanate thin films. Phys. Rev. B. 62, 1408–1413 (2000)CrossRefGoogle Scholar
  33. 33.
    T. M. Bretz-Sullivan, A. Edelman, J. S. Jiang, A. Suslov, D. Graf, J. Zhang, G. Wang, C. Chang, J. E. Pearson, A. B. Martinson, P. B. Littlewood, A. Bhattacharya, Superconductivity in the dilute single band limit in reduced Strontium Titanate. ArXiv:1904.03121 Cond-Mat (2019) (available at http://arxiv.org/abs/1904.03121)
  34. 34.
    Sochnikov, I., Bestwick, A.J., Williams, J.R., Lippman, T.M., Fisher, I.R., Goldhaber-Gordon, D., Kirtley, J.R., Moler, K.A.: Direct measurement of current-phase relations in superconductor/topological insulator/superconductor junctions. Nano Lett. 13, 3086–3092 (2013)CrossRefGoogle Scholar
  35. 35.
    Sochnikov, I., Maier, L., Watson, C.A., Kirtley, J.R., Gould, C., Tkachov, G., Hankiewicz, E.M., Brüne, C., Buhmann, H., Molenkamp, L.W., Moler, K.A.: Nonsinusoidal current-phase relationship in Josephson junctions from the 3D topological insulator HgTe. Phys. Rev. Lett. 114, 066801 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations