Doping Dependence of Electromagnetic Response in Cuprate Superconductors

  • Yiqun Liu
  • Yingping Mou
  • Shiping FengEmail author
Original Paper


The study of the electromagnetic response in cuprate superconductors plays a crucial role in the understanding of the essential physics of these materials. Here the doping dependence of the electromagnetic response in cuprate superconductors is studied within the kinetic energy–driven superconducting mechanism. The kernel of the response function is evaluated based on the linear response approximation for a purely transverse vector potential and can be broken up into its diamagnetic and paramagnetic parts. In particular, this paramagnetic part exactly cancels the corresponding diamagnetic part in the normal-state, and then the Meissner effect is obtained within the entire superconducting phase. Following this kernel of the response function, the electromagnetic response calculation in terms of the specular reflection model qualitatively reproduces many of the striking features observed in the experiments. In particular, the local magnetic field profile follows an exponential law, while the superfluid density exhibits the nonlinear temperature behavior at the lowest temperatures, followed by the linear temperature dependence extending over the most of the superconducting temperature range. Moreover, the maximal value of the superfluid density occurs at around the critical doping δcritical ∼ 0.16 and then decreases in both lower doped and higher doped regimes. The theory also shows that the nonlinear temperature dependence of the superfluid density at the lowest temperatures can be attributed to the nonlocal effects induced by the d-wave gap nodes on the electron Fermi surface.


Electromagnetic response Meissner effect Magnetic field penetration depth Superfluid density Cuprate superconductors 


Funding Information

This work was financially supported by the National Key Research and Development Program of China under Grant No. 2016YFA0300304 and the National Natural Science Foundation of China under Grant Nos. 11574032 and 11734002.


  1. 1.
    See, e.g., Schrieffer, J.R.: Theory of Superconductivity, Addison-Wesley, San Francisco (1964)Google Scholar
  2. 2.
    See, e.g., In: Bonn, B.A., Hardy, W.N., Ginsberg, D.M. (eds.): Physical Properties of High Temperature Superconductors, V, World Scientific, Singapore (1996)Google Scholar
  3. 3.
    See, e.g., Fujita, M., Hiraka, H., Matsuda, M., Matsuura, M., Tranquada, J.M., Wakimoto, S., Xu, G.Y., Yamada, K.: J. Phys. Soc. Jpn., 81, 011007 (2012)Google Scholar
  4. 4.
    Bednorz, J.G., Müller, K.A.: Z. Phys. B 64, 189 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    See, e.g., Tsuei, C.C., Kirtley, J.R.: Rev. Mod. Phys., 72, 969 (2000)Google Scholar
  6. 6.
    Uemura, Y.J., Luke, G.M., Sternlieb, B.J., Brewer, J.H., Carolan, J.F., Hardy, W.N., Kadono, R., Kempton, J.R., Kiefl, R.F., Kreitzman, S.R., Mulhern, P., Riseman, T.M., Williams, D.Ll., Yang, B.X., Uchida S., Takagi, H., Gopalakrishnan, J., Sleight, A.W., Subramanian, M.A., Chien, C.L., Cieplak, M.Z., Xiao, G., Lee, V.Y., Statt, B.W., Stronach, C.E., Kossler, W.J., Yu, X.H.: Phys. Rev. Lett. 62, 2317 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Hardy, W.N., Bonn, D.A., Morgan, D.C., Liang, R., Zhang, K.: Phys. Rev. Lett. 70, 3999 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Khasanov, R., Eshchenko, D.G., Luetkens, H., Morenzoni, E., Prokscha, T., Suter, A., Garifianov, N., Mali, M., Roos, J., Conder, K., Keller, H.: Phys. Rev. Lett. 92, 057602 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Suter, A., Morenzoni, E., Khasanov, R., Luetkens, H., Prokscha, T., Garifianov, N.: Phys. Rev. Lett. 92, 087001 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Božović, I., He, X., Wu, J., Bollinger, A.T.: Nature 536, 309 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Brewer, J.H., Stubbs, S.L., Liang, R., Bonn, D.A., Hardy, W.N., Sonier, J.E., Andrew MacFarlane, W., Peets, D.C.: Sci. Rep. 5, 14156 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Deepwell, D., Peets, D.C., Truncik, C.J.S., Murphy, N.C., Kennett, M.P., Huttema, W.A., Liang, R., Bonn, D.A., Hardy, W.N., Broun, D.M.: Phys. Rev. B 88, 214509 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Khasanov, R., Kondo, T., Strässle, S., Heron, D.O.G., Kaminski, A., Keller, H., Lee, S.L., Takeuchi, T.: Phys. Rev. B 79(R), 180507 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Broun, D.M., Huttema, W.A., Turner, P.J., Özcan, S., Morgan, B., Liang, R., Hardy, W.N., Bonn, D.A.: Phys. Rev. Lett. 99, 237003 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Panagopoulos, C., Rainford, B.D., Cooper, J.R., Lo, W., Tallon, J.L., Loram, J.W., Betouras, J., Wang, Y.S., Chu, C.W.: Phys. Rev. B 60, 14617 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Lemberger, T.R., Hetel, I., Tsukada, A., Naito, M., Randeria, M.: Phys. Rev. B 83(R), 140507 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Bernhard, C., Tallon, J.L., Blasius, Th., Golnik, A., Niedermeyer, Ch.: Phys. Rev. Lett. 86, 1614 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Lee-Hone, N.R., Dodge, J.S., Broun, D.M.: Phys. Rev. B 96, 024501 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Sharapov, S.G., Carbotte, J.P.: Phys. Rev. B 73, 094519 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Sheehy, D.E., Davis, T.P., Franz, M.: Phys. Rev. B 70, 054510 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Kosztin, I., Legget, A.J.: Phys. Rev. Lett. 79, 135 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Yip, S.K., Sauls, J.: Phys. Rev. Lett. 69, 2264 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    Jackson, T.J., Riseman, T.M., Forgan, E.M., Glückler, H., Prokscha, T., Morenzoni, E., Pleines, M., Niedermayer, Ch., Schatz, G., Luetkens, H., Litterst, J.: Phys. Rev. Lett. 84, 4958 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Kamal, S., Liang, R., Hosseini, A., Bonn, D.A., Hardy, W.N.: Phys. Rev. B 58, R8933 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Lee, S.-F., Morgan, D.C., Ormeno, R.J., Broun, D.M., Doyle, R.A., Waldram, J.R., Kadowaki, K.: Phys. Rev. Lett. 77, 735 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Feng, S., Huang, Z., Zhao, H.: Physica C 470, 1968 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Krzyzosiak, M., Huang, Z., Feng, S., Gonczarek, R.: Physica C 470, 407 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Feng, S.: Phys. Rev. B 68, 184501 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Feng, S., Ma, T., Guo, H.: Physica C 436, 14 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Feng, S., Zhao, H., Huang, Z.: Phys. Rev. B 85, 054509 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Feng, S., Zhao, H., Huang, Z.: Phys. Rev. B 85(E), 099902 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    See, e.g., Feng, S., Lan, Y., Zhao, H., Kuang, L., Qin, L., Ma, X.: Int. J. Mod. Phys. B 29, 1530009 (2015)CrossRefGoogle Scholar
  33. 33.
    Feng, S., Kuang, L., Zhao, H.: Phys. C 517, 5 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Fukuyama, H., Ebisawa, H., Wada, Y.: Prog. Theor. Phys. 42, 494 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    Fukuyama, H.: Prog. Theor. Phys. 42, 1284 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    Misawa, S.: Phys. Rev. B 49, 6305 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Kostyrko, T., Micnas, R., Chao, K.A.: Phys. Rev. B 49, 6158 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    See, e.g., Kastner, M.A., Birgeneau, R.J., Shirane, G., Endoh, Y.: Rev. Mod. Phys. 70, 897 (1998)Google Scholar
  39. 39.
    Anderson, P.W.: Science 235, 1196 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    Feng, S., Qin, J., Ma, T.: J. Phys.: Condens. Matter 16, 343 (2004)ADSGoogle Scholar
  41. 41.
    Feng, S., Su, Z.B., Yu, L.: Phys. Rev. B 49, 2368 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Eliashberg, G.M.: Sov. Phys. JETP 11, 696 (1960)Google Scholar
  44. 44.
    McMillan, W.L., Rowell, J.M.: Phys. Rev. Lett. 14, 108 (1965)ADSCrossRefGoogle Scholar
  45. 45.
    Feng, S., Wu, J.B., Su, Z.B., Yu, L.: Phys. Rev. B 47, 15192 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    Gao, D., Mou, Y., Liu, Y., Tan, S., Feng, S.: Phil. Mag. 99, 752 (2019)ADSCrossRefGoogle Scholar
  47. 47.
    Mou, Y., Feng, S.: Phil. Mag. 97, 3361 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Jing, P., Liu, Y., Zhao, H., Kuang, L., Feng, S.: Phil. Mag. Lett. 97, 206 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Feng, S., Gao, D., Zhao, H.: Phil. Mag. 96, 1245 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Zhao, H., Gao, D., Feng, S.: Physica C 534, 1 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    Gao, D., Liu, Y., Zhao, H., Mou, Y., Feng, S.: Physica C 551, 72 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    Zhao, H., Mou, Y., Feng, S.: J. Supercond. Nov. Magn. 31, 683 (2018)CrossRefGoogle Scholar
  53. 53.
    Feng, S., Gao, D., Liu, Y., Mou, Y., Tan, S.: J. Supercond. Nov. Magn., in the press. (2019)
  54. 54.
    See, e.g., Mahan, G.D.: Many-Particle Physics, Plenum Press, New York (1981)Google Scholar
  55. 55.
    Liu, Y., Feng, S.: unpublisedGoogle Scholar
  56. 56.
    See, e.g., Abrikosov, A.A.: Fundamentals of the Theory of Metals, Elsevier Science Publishers B. V (1988)Google Scholar
  57. 57.
    See, e.g., Tinkham, M.: Introduction to Superconductivity, Appendix 3 McGraw-Hill (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Normal UniversityBeijingChina

Personalised recommendations