Advertisement

The Itinerancy and Interactions of the Linear Strings of Holes in Copper Oxide Superconductors

  • Moshe DayanEmail author
Original Paper
  • 15 Downloads

Abstract

Here I present a new model for the itinerancy of the strings of holes in the cuprate HTSC. The model assumes various scenarios with respect to the order of the holes hopping and evaluates the weighting parameters for the different scenarios. The new model still results in the aggregation of holes into strings, but yields a spectral distribution for the itinerancy rates of the strings. From this distribution, I infer a spectral distribution for the magnetic interaction between the strings, which suggests also a spectral distribution for the pseudogap parameter, and some relevant experimental functions. Apart from these distributions, the basic assumptions of former relevant theories remain intact. Such assumptions are the existence of the anti-ferromagnetic phases A and B, the basic structure of the pseudogap ground state, the excitation operators, and the field. The ground state and the field are basically divided into two bands, the gapless low-energy band and the high-energy band. Due to the wide distributions, the bands may be partially overlapped.

Keywords

High-temperature superconductors Strongly correlated electrons 

Notes

References

  1. 1.
    Damascelli, A., Hussain, Z., Shen, Z.X.: Rev. Mod. Phys. 75, 473 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Fisher, O., et al.: Mod. Phys. 79, 353 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Tranquada, J. in: Schriffer, J.R., Brooks, J. S. (eds.) Handbook of high temperature superconductivity, vol. 6, pp 257–298. Springer, Berlin (2007)Google Scholar
  4. 4.
    Mott, N. F. : in High temperature superconductivity, Proc. Of the 39th Scottish Universities Summer School in Physics, eds. Tunstall, D. P. and Barford, W. pp 271–294. Adam Hilger, Bristol (1991)Google Scholar
  5. 5.
    Anderson, P.W.: Science. 235, 1196 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Dayan, M.: J. Supercond. Nov. Magn. 17, 487 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Dayan, M.: J. Supercond. Nov. Magn. 17, 739 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Dayan, M.: J. Supercond. Nov. Magn. 20, 239 (2007)CrossRefGoogle Scholar
  9. 9.
    Dayan, M.: J. Supercond. Nov. Magn. 22, 517 (2009)CrossRefGoogle Scholar
  10. 10.
    Dayan, M.: Cond. Mat. arXiv, 1011.3206 (2010)ADSGoogle Scholar
  11. 11.
    Dayan, M.: J. Supercond. Nov. Magn. 26, 2919 (2013)Google Scholar
  12. 12.
    Fulde, P.: Elect. Corr. Mol. Sol. 12.6, 334–340 (1995) and references thereinGoogle Scholar
  13. 13.
    Vojta, M., Rosch, O.: Phys. Rev. B77, 094504 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    White, S.R., Scalapino, D.J.: Phys. Rev. B79, 220504 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Tranquada, J.M., et al.: Nature. 375, 561 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Kampf, A.P., Scalapino, D.J., White, S.R.: Phys. Rev. B64, 052509 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Tranquada, J.M., et al.: Nature. 429, 534 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Hanaguri, T., et al.: Nature. 430, 1001 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    McElroy, K., et al.: Phys. Rev. Lett. 94, 197005 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Kohsaka, Y., et al.: Science. 315, 1380 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Cheong, S.-W., et al.: Phys. Rev. Lett. 67, 1791 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    Thurston, T.R., et al.: Phys. Rev. B46, 9128 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    Lake, B., et al.: Nature. 400, 43 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Yamada, K., et al.: Phys. Rev. B57, 6165 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Fujita, M., et al.: Phys. Rev. B70, 104517 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Ino, A., et al.: Phys. Rev. B62, 4137 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Ino, A., et al.: Phys. Rev. B65, 094504 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Yoshida, T., et al.: Phys. Rev. B74, 224510 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    He, R.-H., et al.: Science. 331, 1579 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Kondo, T., et al.: Phys. Rev. B80, 100505 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Gurvitch, M., et al.: Phys. Rev. Lett. 63, 1008 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    Valles, J.M., et al.: Phys. Rev. B44, 11986 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    Gurvitch, M., et al.: Phys. Rev. Lett. 89, 087002 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations