Synthesis, Structural Studies, and Magnetic Properties of a New Mixed-Valence Diphosphate: Zn2+5Fe3+2(P2O7)4

  • H. Lamsaf
  • E. H. Elghadraoui
  • R. Fausto
  • A. Oulmekki
  • B. F. O. CostaEmail author
Original Paper


A new mixed-valence diphosphate, Zn2+5Fe3+2(P2O7)4, was synthesized from FeII5FeIII2(P2O7)4 via the “solid way” route, by substitution of FeII by ZnII. The obtained X-ray data confirmed the crystallization of the compound in the C2221 symmetry space group (orthorhombic). Magnetic measurements were performed showing that, at room temperature, the compound is paramagnetic and that the Néel temperature is 15.44(20) K. The compound was also investigated by infrared and Raman spectroscopies, in particular to characterize the (P2O7)4− and M–O vibrations.


New mixed-valence diphosphate X-ray diffraction Raman and infrared spectroscopies Magnetometry 


Funding Information

This work was partially supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under the Project No. UID/FIS/04564/2016. Access to TAIL-UC (VSM measurements) was funded under QREN-Mais Centro Project ICT-2009-02-012-1890. The Coimbra Chemistry Center (CQC) is also supported by FCT (Project UI0313/QUI/2013) and COMPETE. R.F. also acknowledges the Portugal 2020 Project MATIS.


  1. 1.
    Mayr, W.: Biochem. J. 2, 585–591 (1988)CrossRefGoogle Scholar
  2. 2.
    Bonnet, P., Millet, J.M.M., Leclercq, C., Védrine, J.C.: J. Catal. 158, 128–141 (1996)CrossRefGoogle Scholar
  3. 3.
    Bonnet, P., Millet, J.M.M.: J. Catal. 161, 198–205 (1996)CrossRefGoogle Scholar
  4. 4.
    Health Risks of Heavy Metals from Long-range Transboundary Air Pollution, Annual Report of the World Health Organization (2007)Google Scholar
  5. 5.
    Biney, C., Amuzu, A.T., Calamari, D., Kaba, N., Mbome, I.L., Naeve, H., Ochumba, O., Osibanjo, O., Radegonde, V., Saad, M.A.H.: FAO Fish. Rep. (1992)Google Scholar
  6. 6.
    1ères Assises Nationales de R&D Autour des Phosphates: Skhirat. (2013)Google Scholar
  7. 7.
    Terebilenko, K.V., Kirichok, A.A., Baumer, V.N., Sereduk, M., Slobodyanik, N.S., Gütlich, P.: J. Solid State Chem. 183(6), 1473–1476 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Barpanda, P., Liu, G., Mohamed, Z., Ling, C.D., Yamada, A.: Solid State Ionics. 268, 305–311 (2014)CrossRefGoogle Scholar
  9. 9.
    Abadi, S., Aride, J., Benkhouja, K., Haddad, M., Taibi, M.: Arab. J. Chem. (2017)Google Scholar
  10. 10.
    Malaman, B., Ijjaali, M., Gerardin, R., Venturini, G., Gleitzer, C.: Eur. J. Solid State Inorg. Chem. 29, 1269–1284 (1992)Google Scholar
  11. 11.
    Boudin, S., Grandin, A., Labbe, P.H., Grebille, D., Nguyen, N., Ducourelle, A., Raveau, B.: J. Solid State Chem. 121, 291–300 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Elbelghitti, A., Boukhari, A.: Acta Crystallogr. Sect. C. 50, 1648–1650 (1994)CrossRefGoogle Scholar
  13. 13.
    Lamsaf, H., Fausto, R., Costa, B.F.O., Toyir, J., Elghadraoui, E.H., Ijjaali, M., Oulmekki, A.: Mater. Chem. Phys. 216, 22–27 (2018)CrossRefGoogle Scholar
  14. 14.
    Lamsaf, H., Oulmekki, A., Elghadraoui, E.H., Fausto, R., Costa, B.F.O.: J. Phys. Chem. Solids. 119, 122–125 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Lamsaf, H., Oulmekki, A., Elghadraoui, E.H., Fausto, R., Wagner, F.E., Costa, B.F.O.: J. Supercond. Nov. Magn. 32, 1377 (2018). CrossRefGoogle Scholar
  16. 16.
    Ijjaadi M., PhD Thesis, University of Fes, Morocco, 1994Google Scholar
  17. 17.
    X’PertHighScore Plus: PANalytical. Almelo B.V, Netherlands (2006)Google Scholar
  18. 18.
    Momma, K., Izumi, F.: VESTA 3. J.Appl. Crystallogr. 44, 1272–1276 (2011)CrossRefGoogle Scholar
  19. 19.
    Jain, A., Hautier, G., Moore, C., Ong, S.P., Fischer, C.C., Mueller, T., Persson, K.A., Ceder, G.: Comput. Mater. Sci. 50, 2295–2310 (2011)CrossRefGoogle Scholar
  20. 20.
    Guinier A., Dunod X. (Ed.), Theorie et Technique de la Radiocristallographie, third ed., 1964, p. 462Google Scholar
  21. 21.
    Genkina, E.A., Maksimov, B.A., Zvereva, O.V., Mininze, Yu, M., Lyubutin, I.S., Luchko, S.V., Yakovlev, V.V.: Sov. Phys. Crystallogr. 37, 627–632 (1992)Google Scholar
  22. 22.
    Shannon, R.D.: Acta Crystallogr. A. 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    Cullity, B.D., Stuart, R.S.: Elements of X-ray diffraction. Prentice Hall, Upper Saddle River, NJ (2001)Google Scholar
  24. 24.
    Ruette, F., Sierralta, A., Sánchez, M., Luiggi, N.: J. Comput. Meth. Sci. Eng. 17, 55–62 (2017)Google Scholar
  25. 25.
    Baran, E.J., Mercader, R.C., Massaferro, A., Kremer, E.: Spectrochim. Acta A. 60, 1001–1005 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Rulmont, A., Cahay, R., Liegeois-Duyckaerts, M., Tarte, P.: Eur. J. Solid State Inorg.Chem. 28, 207–219 (1981)Google Scholar
  27. 27.
    Farmer, V.C.: The Infrared Spectra of Minerals, Minerals Soc. Publ., London (1974)CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Brow, R.K., Schlesinger, M.E., Ghussn, L., Zanotto, E.D.: J. Non-Cryst. Sol. 356, 1252–1257 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Scholza, R., Frost, R.L., Xi, Y., Graça, L.M., Lagoeiro, L., López, A.: J. Mol. Struct. 1039, 22–27 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Lamsaf
    • 1
  • E. H. Elghadraoui
    • 1
  • R. Fausto
    • 2
  • A. Oulmekki
    • 1
  • B. F. O. Costa
    • 3
    Email author
  1. 1.Chemistry Laboratory of Condensed Matter (LCMC), Faculty of Science and Technology FezUniversity of Sidi Mohammed Ben AbdellahFesMorocco
  2. 2.CQC, Department of ChemistryUniversity of CoimbraCoimbraPortugal
  3. 3.CFisUC, Department of PhysicsUniversity of CoimbraCoimbraPortugal

Personalised recommendations